边际变换下的不变相关性

IF 1.4 3区 数学 Q2 STATISTICS & PROBABILITY
Takaaki Koike , Liyuan Lin , Ruodu Wang
{"title":"边际变换下的不变相关性","authors":"Takaaki Koike ,&nbsp;Liyuan Lin ,&nbsp;Ruodu Wang","doi":"10.1016/j.jmva.2024.105361","DOIUrl":null,"url":null,"abstract":"<div><p>A useful property of independent samples is that their correlation remains the same after applying marginal transforms. This invariance property plays a fundamental role in statistical inference, but does not hold in general for dependent samples. In this paper, we study this invariance property on the Pearson correlation coefficient and its applications. A multivariate random vector is said to have an invariant correlation if its pairwise correlation coefficients remain unchanged under any common marginal transforms. For a bivariate case, we characterize all models of such a random vector via a certain combination of comonotonicity—the strongest form of positive dependence—and independence. In particular, we show that the class of exchangeable copulas with invariant correlation is precisely described by what we call positive Fréchet copulas. In the general multivariate case, we characterize the set of all invariant correlation matrices via the clique partition polytope. We also propose a positive regression dependent model that admits any prescribed invariant correlation matrix. Finally, we show that all our characterization results of invariant correlation, except one special case, remain the same if the common marginal transforms are confined to the set of increasing ones.</p></div>","PeriodicalId":16431,"journal":{"name":"Journal of Multivariate Analysis","volume":"204 ","pages":"Article 105361"},"PeriodicalIF":1.4000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0047259X2400068X/pdfft?md5=87348d6db627c38f7dec7cb4cd435464&pid=1-s2.0-S0047259X2400068X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Invariant correlation under marginal transforms\",\"authors\":\"Takaaki Koike ,&nbsp;Liyuan Lin ,&nbsp;Ruodu Wang\",\"doi\":\"10.1016/j.jmva.2024.105361\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A useful property of independent samples is that their correlation remains the same after applying marginal transforms. This invariance property plays a fundamental role in statistical inference, but does not hold in general for dependent samples. In this paper, we study this invariance property on the Pearson correlation coefficient and its applications. A multivariate random vector is said to have an invariant correlation if its pairwise correlation coefficients remain unchanged under any common marginal transforms. For a bivariate case, we characterize all models of such a random vector via a certain combination of comonotonicity—the strongest form of positive dependence—and independence. In particular, we show that the class of exchangeable copulas with invariant correlation is precisely described by what we call positive Fréchet copulas. In the general multivariate case, we characterize the set of all invariant correlation matrices via the clique partition polytope. We also propose a positive regression dependent model that admits any prescribed invariant correlation matrix. Finally, we show that all our characterization results of invariant correlation, except one special case, remain the same if the common marginal transforms are confined to the set of increasing ones.</p></div>\",\"PeriodicalId\":16431,\"journal\":{\"name\":\"Journal of Multivariate Analysis\",\"volume\":\"204 \",\"pages\":\"Article 105361\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0047259X2400068X/pdfft?md5=87348d6db627c38f7dec7cb4cd435464&pid=1-s2.0-S0047259X2400068X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Multivariate Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0047259X2400068X\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Multivariate Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0047259X2400068X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

独立样本的一个有用特性是,在应用边际变换后,它们的相关性保持不变。这一不变量特性在统计推断中发挥着重要作用,但对于因变量样本来说,这一不变量特性一般并不成立。本文将研究皮尔逊相关系数的这一不变性质及其应用。如果一个多变量随机向量的成对相关系数在任何常见边际变换下保持不变,则称该向量具有不变量相关性。对于双变量情况,我们通过一定的协整性--正相关性的最强形式--和独立性的结合来描述这种随机向量的所有模型。特别是,我们证明了具有不变相关性的可交换协方差的类别正是由我们称之为正弗雷谢特协方差所描述的。在一般多变量情况下,我们通过簇分区多面体描述了所有不变相关矩阵的集合。我们还提出了一种正回归依赖模型,它允许任何规定的不变相关矩阵。最后,我们证明,如果将公共边际变换限制在递增变换集合中,那么除了一种特殊情况外,我们对不变相关性的所有表征结果都保持不变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Invariant correlation under marginal transforms

A useful property of independent samples is that their correlation remains the same after applying marginal transforms. This invariance property plays a fundamental role in statistical inference, but does not hold in general for dependent samples. In this paper, we study this invariance property on the Pearson correlation coefficient and its applications. A multivariate random vector is said to have an invariant correlation if its pairwise correlation coefficients remain unchanged under any common marginal transforms. For a bivariate case, we characterize all models of such a random vector via a certain combination of comonotonicity—the strongest form of positive dependence—and independence. In particular, we show that the class of exchangeable copulas with invariant correlation is precisely described by what we call positive Fréchet copulas. In the general multivariate case, we characterize the set of all invariant correlation matrices via the clique partition polytope. We also propose a positive regression dependent model that admits any prescribed invariant correlation matrix. Finally, we show that all our characterization results of invariant correlation, except one special case, remain the same if the common marginal transforms are confined to the set of increasing ones.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Multivariate Analysis
Journal of Multivariate Analysis 数学-统计学与概率论
CiteScore
2.40
自引率
25.00%
发文量
108
审稿时长
74 days
期刊介绍: Founded in 1971, the Journal of Multivariate Analysis (JMVA) is the central venue for the publication of new, relevant methodology and particularly innovative applications pertaining to the analysis and interpretation of multidimensional data. The journal welcomes contributions to all aspects of multivariate data analysis and modeling, including cluster analysis, discriminant analysis, factor analysis, and multidimensional continuous or discrete distribution theory. Topics of current interest include, but are not limited to, inferential aspects of Copula modeling Functional data analysis Graphical modeling High-dimensional data analysis Image analysis Multivariate extreme-value theory Sparse modeling Spatial statistics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信