利用电子电离质谱法(EI-MS)确定硝氮类似物的结构特征

IF 2.6 3区 医学 Q2 CHEMISTRY, ANALYTICAL
Emma K. Hardwick, J. Tyler Davidson
{"title":"利用电子电离质谱法(EI-MS)确定硝氮类似物的结构特征","authors":"Emma K. Hardwick,&nbsp;J. Tyler Davidson","doi":"10.1016/j.forc.2024.100605","DOIUrl":null,"url":null,"abstract":"<div><p>Nitazene analogs are among the most recent and potent additions to the novel synthetic opioid (NSO) market, and new analogs continue to emerge. Seized drug analysis commonly utilizes gas chromatography-electron ionization-mass spectrometry (GC-EI-MS), so it is therefore imperative to understand how nitazene analogs behave under EI-MS conditions, and how substitution at various sites on the molecule may impact the resulting EI mass spectra. This study characterizes the EI fragmentation behavior of 20 representative nitazene analogs that contain differing substitutions and proposes rational mechanisms to explain the observed behavior.</p><p>A general EI fragmentation pathway for nitazene analogs was proposed, with the most common nitazene fragment ions being observed at <em>m</em>/<em>z</em> 86, <em>m</em>/<em>z</em> 107, <em>m</em>/<em>z</em> 58, and <em>m</em>/<em>z</em> 77. Characteristic ions were determined for different substitution groups, enabling the identification of diethyl, desethyl, pyrrolidine, and piperidine substitutions at the amine moiety, and different alkoxy chain lengths at the aromatic ring of the benzyl group. Mechanisms for the formation of these characteristic ions were proposed with the aid of isotopically labeled standards and high-resolution mass spectrometry measurements. To help with the interpretation of EI mass spectra for nitazene analogs, decision trees were developed that encompass the characteristic fragment ions observed for substitutions to the amine moiety and benzyl group, with additional criteria provided for substitutions to the benzimidazole moiety. This study summarizes the fragmentation patterns and characteristic fragment ions in the EI mass spectra of 20 representative nitazene analogs, which will aid the seized drug community in identifying novel nitazene analogs.</p></div>","PeriodicalId":324,"journal":{"name":"Forensic Chemistry","volume":"40 ","pages":"Article 100605"},"PeriodicalIF":2.6000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural characterization of nitazene analogs using electron ionization-mass spectrometry (EI-MS)\",\"authors\":\"Emma K. Hardwick,&nbsp;J. Tyler Davidson\",\"doi\":\"10.1016/j.forc.2024.100605\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Nitazene analogs are among the most recent and potent additions to the novel synthetic opioid (NSO) market, and new analogs continue to emerge. Seized drug analysis commonly utilizes gas chromatography-electron ionization-mass spectrometry (GC-EI-MS), so it is therefore imperative to understand how nitazene analogs behave under EI-MS conditions, and how substitution at various sites on the molecule may impact the resulting EI mass spectra. This study characterizes the EI fragmentation behavior of 20 representative nitazene analogs that contain differing substitutions and proposes rational mechanisms to explain the observed behavior.</p><p>A general EI fragmentation pathway for nitazene analogs was proposed, with the most common nitazene fragment ions being observed at <em>m</em>/<em>z</em> 86, <em>m</em>/<em>z</em> 107, <em>m</em>/<em>z</em> 58, and <em>m</em>/<em>z</em> 77. Characteristic ions were determined for different substitution groups, enabling the identification of diethyl, desethyl, pyrrolidine, and piperidine substitutions at the amine moiety, and different alkoxy chain lengths at the aromatic ring of the benzyl group. Mechanisms for the formation of these characteristic ions were proposed with the aid of isotopically labeled standards and high-resolution mass spectrometry measurements. To help with the interpretation of EI mass spectra for nitazene analogs, decision trees were developed that encompass the characteristic fragment ions observed for substitutions to the amine moiety and benzyl group, with additional criteria provided for substitutions to the benzimidazole moiety. This study summarizes the fragmentation patterns and characteristic fragment ions in the EI mass spectra of 20 representative nitazene analogs, which will aid the seized drug community in identifying novel nitazene analogs.</p></div>\",\"PeriodicalId\":324,\"journal\":{\"name\":\"Forensic Chemistry\",\"volume\":\"40 \",\"pages\":\"Article 100605\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forensic Chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468170924000572\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forensic Chemistry","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468170924000572","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

硝氮类似物是新型合成阿片(NSO)市场上最新出现的强效新药,而且新的类似物还在不断涌现。缉获药物分析通常使用气相色谱-电子电离质谱法(GC-EI-MS),因此必须了解硝氮类似物在 EI-MS 条件下的表现,以及分子上不同位点的取代如何影响所产生的 EI 质谱。本研究描述了含有不同取代位点的 20 种具有代表性的硝氮类似物的电离碎片行为,并提出了解释所观察到的行为的合理机制。针对不同的取代基团确定了特征离子,从而确定了胺分子上的二乙基、去乙基、吡咯烷和哌啶取代基,以及苄基芳香环上的不同烷氧基链长。借助同位素标记标准和高分辨率质谱测量,提出了这些特征离子的形成机制。为了帮助解释硝氮类似物的电离质谱,研究人员开发了决策树,其中包括观察到的胺分子和苄基取代的特征碎片离子,并为苯并咪唑分子的取代提供了额外的标准。本研究总结了 20 种具有代表性的硝基苯类似物的电离质谱中的碎片模式和特征碎片离子,这将有助于缉毒界鉴定新型硝基苯类似物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Structural characterization of nitazene analogs using electron ionization-mass spectrometry (EI-MS)

Structural characterization of nitazene analogs using electron ionization-mass spectrometry (EI-MS)

Nitazene analogs are among the most recent and potent additions to the novel synthetic opioid (NSO) market, and new analogs continue to emerge. Seized drug analysis commonly utilizes gas chromatography-electron ionization-mass spectrometry (GC-EI-MS), so it is therefore imperative to understand how nitazene analogs behave under EI-MS conditions, and how substitution at various sites on the molecule may impact the resulting EI mass spectra. This study characterizes the EI fragmentation behavior of 20 representative nitazene analogs that contain differing substitutions and proposes rational mechanisms to explain the observed behavior.

A general EI fragmentation pathway for nitazene analogs was proposed, with the most common nitazene fragment ions being observed at m/z 86, m/z 107, m/z 58, and m/z 77. Characteristic ions were determined for different substitution groups, enabling the identification of diethyl, desethyl, pyrrolidine, and piperidine substitutions at the amine moiety, and different alkoxy chain lengths at the aromatic ring of the benzyl group. Mechanisms for the formation of these characteristic ions were proposed with the aid of isotopically labeled standards and high-resolution mass spectrometry measurements. To help with the interpretation of EI mass spectra for nitazene analogs, decision trees were developed that encompass the characteristic fragment ions observed for substitutions to the amine moiety and benzyl group, with additional criteria provided for substitutions to the benzimidazole moiety. This study summarizes the fragmentation patterns and characteristic fragment ions in the EI mass spectra of 20 representative nitazene analogs, which will aid the seized drug community in identifying novel nitazene analogs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Forensic Chemistry
Forensic Chemistry CHEMISTRY, ANALYTICAL-
CiteScore
5.70
自引率
14.80%
发文量
65
审稿时长
46 days
期刊介绍: Forensic Chemistry publishes high quality manuscripts focusing on the theory, research and application of any chemical science to forensic analysis. The scope of the journal includes fundamental advancements that result in a better understanding of the evidentiary significance derived from the physical and chemical analysis of materials. The scope of Forensic Chemistry will also include the application and or development of any molecular and atomic spectrochemical technique, electrochemical techniques, sensors, surface characterization techniques, mass spectrometry, nuclear magnetic resonance, chemometrics and statistics, and separation sciences (e.g. chromatography) that provide insight into the forensic analysis of materials. Evidential topics of interest to the journal include, but are not limited to, fingerprint analysis, drug analysis, ignitable liquid residue analysis, explosives detection and analysis, the characterization and comparison of trace evidence (glass, fibers, paints and polymers, tapes, soils and other materials), ink and paper analysis, gunshot residue analysis, synthetic pathways for drugs, toxicology and the analysis and chemistry associated with the components of fingermarks. The journal is particularly interested in receiving manuscripts that report advances in the forensic interpretation of chemical evidence. Technology Readiness Level: When submitting an article to Forensic Chemistry, all authors will be asked to self-assign a Technology Readiness Level (TRL) to their article. The purpose of the TRL system is to help readers understand the level of maturity of an idea or method, to help track the evolution of readiness of a given technique or method, and to help filter published articles by the expected ease of implementation in an operation setting within a crime lab.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信