Shapley Values-enabled Progressive Pseudo Bag Augmentation for Whole-Slide Image Classification.

Renao Yan, Qiehe Sun, Cheng Jin, Yiqing Liu, Yonghong He, Tian Guan, Hao Chen
{"title":"Shapley Values-enabled Progressive Pseudo Bag Augmentation for Whole-Slide Image Classification.","authors":"Renao Yan, Qiehe Sun, Cheng Jin, Yiqing Liu, Yonghong He, Tian Guan, Hao Chen","doi":"10.1109/TMI.2024.3453386","DOIUrl":null,"url":null,"abstract":"<p><p>In computational pathology, whole-slide image (WSI) classification presents a formidable challenge due to its gigapixel resolution and limited fine-grained annotations. Multiple-instance learning (MIL) offers a weakly supervised solution, yet refining instance-level information from bag-level labels remains challenging. While most of the conventional MIL methods use attention scores to estimate instance importance scores (IIS) which contribute to the prediction of the slide labels, these often lead to skewed attention distributions and inaccuracies in identifying crucial instances. To address these issues, we propose a new approach inspired by cooperative game theory: employing Shapley values to assess each instance's contribution, thereby improving IIS estimation. The computation of the Shapley value is then accelerated using attention, meanwhile retaining the enhanced instance identification and prioritization. We further introduce a framework for the progressive assignment of pseudo bags based on estimated IIS, encouraging more balanced attention distributions in MIL models. Our extensive experiments on CAMELYON-16, BRACS, TCGA-LUNG, and TCGA-BRCA datasets show our method's superiority over existing state-of-the-art approaches, offering enhanced interpretability and class-wise insights. We will release the code upon acceptance.</p>","PeriodicalId":94033,"journal":{"name":"IEEE transactions on medical imaging","volume":"PP ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Shapley Values-enabled Progressive Pseudo Bag Augmentation for Whole-Slide Image Classification.\",\"authors\":\"Renao Yan, Qiehe Sun, Cheng Jin, Yiqing Liu, Yonghong He, Tian Guan, Hao Chen\",\"doi\":\"10.1109/TMI.2024.3453386\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In computational pathology, whole-slide image (WSI) classification presents a formidable challenge due to its gigapixel resolution and limited fine-grained annotations. Multiple-instance learning (MIL) offers a weakly supervised solution, yet refining instance-level information from bag-level labels remains challenging. While most of the conventional MIL methods use attention scores to estimate instance importance scores (IIS) which contribute to the prediction of the slide labels, these often lead to skewed attention distributions and inaccuracies in identifying crucial instances. To address these issues, we propose a new approach inspired by cooperative game theory: employing Shapley values to assess each instance's contribution, thereby improving IIS estimation. The computation of the Shapley value is then accelerated using attention, meanwhile retaining the enhanced instance identification and prioritization. We further introduce a framework for the progressive assignment of pseudo bags based on estimated IIS, encouraging more balanced attention distributions in MIL models. Our extensive experiments on CAMELYON-16, BRACS, TCGA-LUNG, and TCGA-BRCA datasets show our method's superiority over existing state-of-the-art approaches, offering enhanced interpretability and class-wise insights. We will release the code upon acceptance.</p>\",\"PeriodicalId\":94033,\"journal\":{\"name\":\"IEEE transactions on medical imaging\",\"volume\":\"PP \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on medical imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TMI.2024.3453386\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on medical imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TMI.2024.3453386","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在计算病理学中,由于千兆像素的分辨率和有限的细粒度注释,整张幻灯片图像(WSI)分类是一项艰巨的挑战。多实例学习(Multiple-instance Learning,MIL)提供了一种弱监督解决方案,但从包级标签中提炼实例级信息仍是一项挑战。虽然大多数传统的多实例学习方法都使用注意力分数来估算有助于预测幻灯片标签的实例重要性分数(IIS),但这些方法往往会导致注意力分布偏斜,无法准确识别关键实例。为了解决这些问题,我们提出了一种受合作博弈论启发的新方法:使用夏普利值来评估每个实例的贡献,从而改进 IIS 估算。然后利用注意力加速夏普利值的计算,同时保留增强的实例识别和优先级排序。我们进一步引入了一个框架,用于根据估计的 IIS 逐步分配伪袋,从而鼓励在 MIL 模型中实现更均衡的注意力分布。我们在 CAMELYON-16、BRACS、TCGA-LUNG 和 TCGA-BRCA 数据集上进行了广泛的实验,结果表明我们的方法优于现有的先进方法,具有更强的可解释性和分类洞察力。我们将在验收合格后发布代码。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Shapley Values-enabled Progressive Pseudo Bag Augmentation for Whole-Slide Image Classification.

In computational pathology, whole-slide image (WSI) classification presents a formidable challenge due to its gigapixel resolution and limited fine-grained annotations. Multiple-instance learning (MIL) offers a weakly supervised solution, yet refining instance-level information from bag-level labels remains challenging. While most of the conventional MIL methods use attention scores to estimate instance importance scores (IIS) which contribute to the prediction of the slide labels, these often lead to skewed attention distributions and inaccuracies in identifying crucial instances. To address these issues, we propose a new approach inspired by cooperative game theory: employing Shapley values to assess each instance's contribution, thereby improving IIS estimation. The computation of the Shapley value is then accelerated using attention, meanwhile retaining the enhanced instance identification and prioritization. We further introduce a framework for the progressive assignment of pseudo bags based on estimated IIS, encouraging more balanced attention distributions in MIL models. Our extensive experiments on CAMELYON-16, BRACS, TCGA-LUNG, and TCGA-BRCA datasets show our method's superiority over existing state-of-the-art approaches, offering enhanced interpretability and class-wise insights. We will release the code upon acceptance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信