synphage:以基因保护为重点的噬菌体基因组同源性图谱管道。

IF 2.4 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Bioinformatics advances Pub Date : 2024-08-29 eCollection Date: 2024-01-01 DOI:10.1093/bioadv/vbae126
Virginie Grosboillot, Anna Dragoš
{"title":"synphage:以基因保护为重点的噬菌体基因组同源性图谱管道。","authors":"Virginie Grosboillot, Anna Dragoš","doi":"10.1093/bioadv/vbae126","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Visualization and comparison of genome maps of bacteriophages can be very effective, but none of the tools available on the market allow visualization of gene conservation between multiple sequences at a glance. In addition, most bioinformatic tools running locally are command line only, making them hard to setup, debug, and monitor.</p><p><strong>Results: </strong>To address these motivations, we developed synphage, an easy-to-use and intuitive tool to generate synteny diagrams from GenBank files. This software has a user-friendly interface and uses metadata to monitor the progress and success of the data transformation process. The output plot features colour-coded genes according to their degree of conservation among the group of displayed sequences. The strength of synphage lies also in its modularity and the ability to generate multiple plots with different configurations without having to re-process all the data. In conclusion, synphage reduces the bioinformatic workload of users and allows them to focus on analysis, the most impactful area of their work.</p><p><strong>Availability and implementation: </strong>The synphage tool is implemented in the Python language and is available from the GitHub repository at https://github.com/vestalisvirginis/synphage. This software is released under an Apache-2.0 licence. A PyPI synphage package is available at https://pypi.org/project/synphage/ and a containerized version is available at https://hub.docker.com/r/vestalisvirginis/synphage. Contributions to the software are welcome whether it is reporting a bug or proposing new features and the contribution guidelines are available at https://github.com/vestalisvirginis/synphage/blob/main/CONTRIBUTING.md.</p>","PeriodicalId":72368,"journal":{"name":"Bioinformatics advances","volume":"4 1","pages":"vbae126"},"PeriodicalIF":2.4000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11368388/pdf/","citationCount":"0","resultStr":"{\"title\":\"synphage: a pipeline for phage genome synteny graphics focused on gene conservation.\",\"authors\":\"Virginie Grosboillot, Anna Dragoš\",\"doi\":\"10.1093/bioadv/vbae126\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Motivation: </strong>Visualization and comparison of genome maps of bacteriophages can be very effective, but none of the tools available on the market allow visualization of gene conservation between multiple sequences at a glance. In addition, most bioinformatic tools running locally are command line only, making them hard to setup, debug, and monitor.</p><p><strong>Results: </strong>To address these motivations, we developed synphage, an easy-to-use and intuitive tool to generate synteny diagrams from GenBank files. This software has a user-friendly interface and uses metadata to monitor the progress and success of the data transformation process. The output plot features colour-coded genes according to their degree of conservation among the group of displayed sequences. The strength of synphage lies also in its modularity and the ability to generate multiple plots with different configurations without having to re-process all the data. In conclusion, synphage reduces the bioinformatic workload of users and allows them to focus on analysis, the most impactful area of their work.</p><p><strong>Availability and implementation: </strong>The synphage tool is implemented in the Python language and is available from the GitHub repository at https://github.com/vestalisvirginis/synphage. This software is released under an Apache-2.0 licence. A PyPI synphage package is available at https://pypi.org/project/synphage/ and a containerized version is available at https://hub.docker.com/r/vestalisvirginis/synphage. Contributions to the software are welcome whether it is reporting a bug or proposing new features and the contribution guidelines are available at https://github.com/vestalisvirginis/synphage/blob/main/CONTRIBUTING.md.</p>\",\"PeriodicalId\":72368,\"journal\":{\"name\":\"Bioinformatics advances\",\"volume\":\"4 1\",\"pages\":\"vbae126\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11368388/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioinformatics advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/bioadv/vbae126\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioadv/vbae126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

动机噬菌体基因组图谱的可视化和比较非常有效,但市场上现有的工具都无法一目了然地显示多个序列之间的基因保护情况。此外,大多数在本地运行的生物信息学工具只能通过命令行方式运行,因此很难进行设置、调试和监控:为了解决这些问题,我们开发了 synphage,这是一种易于使用且直观的工具,可从 GenBank 文件中生成同源关系图。该软件拥有友好的用户界面,并使用元数据监控数据转换过程的进度和成功率。输出图的特点是根据显示序列组中基因的保守程度用颜色编码。synphage 的优势还在于它的模块性,能够生成具有不同配置的多个图谱,而无需重新处理所有数据。总之,synphage 减少了用户的生物信息工作量,使他们能够专注于分析工作,这也是对他们工作影响最大的领域:synphage 工具使用 Python 语言实现,可从 GitHub 存储库 https://github.com/vestalisvirginis/synphage 获取。该软件根据 Apache-2.0 许可发布。PyPI synphage 软件包可从 https://pypi.org/project/synphage/ 获取,容器化版本可从 https://hub.docker.com/r/vestalisvirginis/synphage 获取。欢迎对软件进行贡献,无论是报告错误还是提出新功能,贡献指南可在 https://github.com/vestalisvirginis/synphage/blob/main/CONTRIBUTING.md 上获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
synphage: a pipeline for phage genome synteny graphics focused on gene conservation.

Motivation: Visualization and comparison of genome maps of bacteriophages can be very effective, but none of the tools available on the market allow visualization of gene conservation between multiple sequences at a glance. In addition, most bioinformatic tools running locally are command line only, making them hard to setup, debug, and monitor.

Results: To address these motivations, we developed synphage, an easy-to-use and intuitive tool to generate synteny diagrams from GenBank files. This software has a user-friendly interface and uses metadata to monitor the progress and success of the data transformation process. The output plot features colour-coded genes according to their degree of conservation among the group of displayed sequences. The strength of synphage lies also in its modularity and the ability to generate multiple plots with different configurations without having to re-process all the data. In conclusion, synphage reduces the bioinformatic workload of users and allows them to focus on analysis, the most impactful area of their work.

Availability and implementation: The synphage tool is implemented in the Python language and is available from the GitHub repository at https://github.com/vestalisvirginis/synphage. This software is released under an Apache-2.0 licence. A PyPI synphage package is available at https://pypi.org/project/synphage/ and a containerized version is available at https://hub.docker.com/r/vestalisvirginis/synphage. Contributions to the software are welcome whether it is reporting a bug or proposing new features and the contribution guidelines are available at https://github.com/vestalisvirginis/synphage/blob/main/CONTRIBUTING.md.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信