Yujuan Velvin Fu, Giridhar Kaushik Ramachandran, Ahmad Halwani, Bridget T McInnes, Fei Xia, Kevin Lybarger, Meliha Yetisgen, Özlem Uzuner
{"title":"CACER:癌症事件和关系的临床概念注释。","authors":"Yujuan Velvin Fu, Giridhar Kaushik Ramachandran, Ahmad Halwani, Bridget T McInnes, Fei Xia, Kevin Lybarger, Meliha Yetisgen, Özlem Uzuner","doi":"10.1093/jamia/ocae231","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Clinical notes contain unstructured representations of patient histories, including the relationships between medical problems and prescription drugs. To investigate the relationship between cancer drugs and their associated symptom burden, we extract structured, semantic representations of medical problem and drug information from the clinical narratives of oncology notes.</p><p><strong>Materials and methods: </strong>We present Clinical concept Annotations for Cancer Events and Relations (CACER), a novel corpus with fine-grained annotations for over 48 000 medical problems and drug events and 10 000 drug-problem and problem-problem relations. Leveraging CACER, we develop and evaluate transformer-based information extraction models such as Bidirectional Encoder Representations from Transformers (BERT), Fine-tuned Language Net Text-To-Text Transfer Transformer (Flan-T5), Large Language Model Meta AI (Llama3), and Generative Pre-trained Transformers-4 (GPT-4) using fine-tuning and in-context learning (ICL).</p><p><strong>Results: </strong>In event extraction, the fine-tuned BERT and Llama3 models achieved the highest performance at 88.2-88.0 F1, which is comparable to the inter-annotator agreement (IAA) of 88.4 F1. In relation extraction, the fine-tuned BERT, Flan-T5, and Llama3 achieved the highest performance at 61.8-65.3 F1. GPT-4 with ICL achieved the worst performance across both tasks.</p><p><strong>Discussion: </strong>The fine-tuned models significantly outperformed GPT-4 in ICL, highlighting the importance of annotated training data and model optimization. Furthermore, the BERT models performed similarly to Llama3. For our task, large language models offer no performance advantage over the smaller BERT models.</p><p><strong>Conclusions: </strong>We introduce CACER, a novel corpus with fine-grained annotations for medical problems, drugs, and their relationships in clinical narratives of oncology notes. State-of-the-art transformer models achieved performance comparable to IAA for several extraction tasks.</p>","PeriodicalId":50016,"journal":{"name":"Journal of the American Medical Informatics Association","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11491616/pdf/","citationCount":"0","resultStr":"{\"title\":\"CACER: Clinical concept Annotations for Cancer Events and Relations.\",\"authors\":\"Yujuan Velvin Fu, Giridhar Kaushik Ramachandran, Ahmad Halwani, Bridget T McInnes, Fei Xia, Kevin Lybarger, Meliha Yetisgen, Özlem Uzuner\",\"doi\":\"10.1093/jamia/ocae231\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>Clinical notes contain unstructured representations of patient histories, including the relationships between medical problems and prescription drugs. To investigate the relationship between cancer drugs and their associated symptom burden, we extract structured, semantic representations of medical problem and drug information from the clinical narratives of oncology notes.</p><p><strong>Materials and methods: </strong>We present Clinical concept Annotations for Cancer Events and Relations (CACER), a novel corpus with fine-grained annotations for over 48 000 medical problems and drug events and 10 000 drug-problem and problem-problem relations. Leveraging CACER, we develop and evaluate transformer-based information extraction models such as Bidirectional Encoder Representations from Transformers (BERT), Fine-tuned Language Net Text-To-Text Transfer Transformer (Flan-T5), Large Language Model Meta AI (Llama3), and Generative Pre-trained Transformers-4 (GPT-4) using fine-tuning and in-context learning (ICL).</p><p><strong>Results: </strong>In event extraction, the fine-tuned BERT and Llama3 models achieved the highest performance at 88.2-88.0 F1, which is comparable to the inter-annotator agreement (IAA) of 88.4 F1. In relation extraction, the fine-tuned BERT, Flan-T5, and Llama3 achieved the highest performance at 61.8-65.3 F1. GPT-4 with ICL achieved the worst performance across both tasks.</p><p><strong>Discussion: </strong>The fine-tuned models significantly outperformed GPT-4 in ICL, highlighting the importance of annotated training data and model optimization. Furthermore, the BERT models performed similarly to Llama3. For our task, large language models offer no performance advantage over the smaller BERT models.</p><p><strong>Conclusions: </strong>We introduce CACER, a novel corpus with fine-grained annotations for medical problems, drugs, and their relationships in clinical narratives of oncology notes. State-of-the-art transformer models achieved performance comparable to IAA for several extraction tasks.</p>\",\"PeriodicalId\":50016,\"journal\":{\"name\":\"Journal of the American Medical Informatics Association\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11491616/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Medical Informatics Association\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://doi.org/10.1093/jamia/ocae231\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Medical Informatics Association","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1093/jamia/ocae231","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
CACER: Clinical concept Annotations for Cancer Events and Relations.
Objective: Clinical notes contain unstructured representations of patient histories, including the relationships between medical problems and prescription drugs. To investigate the relationship between cancer drugs and their associated symptom burden, we extract structured, semantic representations of medical problem and drug information from the clinical narratives of oncology notes.
Materials and methods: We present Clinical concept Annotations for Cancer Events and Relations (CACER), a novel corpus with fine-grained annotations for over 48 000 medical problems and drug events and 10 000 drug-problem and problem-problem relations. Leveraging CACER, we develop and evaluate transformer-based information extraction models such as Bidirectional Encoder Representations from Transformers (BERT), Fine-tuned Language Net Text-To-Text Transfer Transformer (Flan-T5), Large Language Model Meta AI (Llama3), and Generative Pre-trained Transformers-4 (GPT-4) using fine-tuning and in-context learning (ICL).
Results: In event extraction, the fine-tuned BERT and Llama3 models achieved the highest performance at 88.2-88.0 F1, which is comparable to the inter-annotator agreement (IAA) of 88.4 F1. In relation extraction, the fine-tuned BERT, Flan-T5, and Llama3 achieved the highest performance at 61.8-65.3 F1. GPT-4 with ICL achieved the worst performance across both tasks.
Discussion: The fine-tuned models significantly outperformed GPT-4 in ICL, highlighting the importance of annotated training data and model optimization. Furthermore, the BERT models performed similarly to Llama3. For our task, large language models offer no performance advantage over the smaller BERT models.
Conclusions: We introduce CACER, a novel corpus with fine-grained annotations for medical problems, drugs, and their relationships in clinical narratives of oncology notes. State-of-the-art transformer models achieved performance comparable to IAA for several extraction tasks.
期刊介绍:
JAMIA is AMIA''s premier peer-reviewed journal for biomedical and health informatics. Covering the full spectrum of activities in the field, JAMIA includes informatics articles in the areas of clinical care, clinical research, translational science, implementation science, imaging, education, consumer health, public health, and policy. JAMIA''s articles describe innovative informatics research and systems that help to advance biomedical science and to promote health. Case reports, perspectives and reviews also help readers stay connected with the most important informatics developments in implementation, policy and education.