Shengsheng Tang, Hongzheng Zhang, Junhao Liang, Shishi Tang, Lin Li, Yuxuan Li, Yuan Xu, Daohu Wang, Yi Zhou
{"title":"基于机器学习和 SHAP 解释器的前列腺癌治疗推荐研究。","authors":"Shengsheng Tang, Hongzheng Zhang, Junhao Liang, Shishi Tang, Lin Li, Yuxuan Li, Yuan Xu, Daohu Wang, Yi Zhou","doi":"10.1111/cas.16327","DOIUrl":null,"url":null,"abstract":"<p>This study utilized data from 140,294 prostate cancer cases from the Surveillance, Epidemiology, and End Results (SEER) database. Here, 10 different machine learning algorithms were applied to develop treatment options for predicting patients with prostate cancer, differentiating between surgical and non-surgical treatments. The performances of the algorithms were measured using the area under the receiver operating characteristic curve (AUC), accuracy, sensitivity, specificity, positive predictive value, negative predictive value. The Shapley Additive Explanations (SHAP) method was employed to investigate the key factors influencing the prediction process. Survival analysis methods were used to compare the survival rates of different treatment options. The CatBoost model yielded the best results (AUC = 0.939, sensitivity = 0.877, accuracy = 0.877). SHAP interpreters revealed that the T stage, cancer stage, age, cores positive percentage, prostate-specific antigen, and Gleason score were the most critical factors in predicting treatment options. The study found that surgery significantly improved survival rates, with patients undergoing surgery experiencing a 20.36% increase in 10-year survival rates compared with those receiving non-surgical treatments. Among surgical options, radical prostatectomy had the highest 10-year survival rate at 89.2%. This study successfully developed a predictive model to guide treatment decisions for prostate cancer. Moreover, the model enhanced the transparency of the decision-making process, providing clinicians with a reference for formulating personalized treatment plans.</p>","PeriodicalId":9580,"journal":{"name":"Cancer Science","volume":"115 11","pages":"3755-3766"},"PeriodicalIF":4.5000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11531952/pdf/","citationCount":"0","resultStr":"{\"title\":\"Prostate cancer treatment recommendation study based on machine learning and SHAP interpreter\",\"authors\":\"Shengsheng Tang, Hongzheng Zhang, Junhao Liang, Shishi Tang, Lin Li, Yuxuan Li, Yuan Xu, Daohu Wang, Yi Zhou\",\"doi\":\"10.1111/cas.16327\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study utilized data from 140,294 prostate cancer cases from the Surveillance, Epidemiology, and End Results (SEER) database. Here, 10 different machine learning algorithms were applied to develop treatment options for predicting patients with prostate cancer, differentiating between surgical and non-surgical treatments. The performances of the algorithms were measured using the area under the receiver operating characteristic curve (AUC), accuracy, sensitivity, specificity, positive predictive value, negative predictive value. The Shapley Additive Explanations (SHAP) method was employed to investigate the key factors influencing the prediction process. Survival analysis methods were used to compare the survival rates of different treatment options. The CatBoost model yielded the best results (AUC = 0.939, sensitivity = 0.877, accuracy = 0.877). SHAP interpreters revealed that the T stage, cancer stage, age, cores positive percentage, prostate-specific antigen, and Gleason score were the most critical factors in predicting treatment options. The study found that surgery significantly improved survival rates, with patients undergoing surgery experiencing a 20.36% increase in 10-year survival rates compared with those receiving non-surgical treatments. Among surgical options, radical prostatectomy had the highest 10-year survival rate at 89.2%. This study successfully developed a predictive model to guide treatment decisions for prostate cancer. Moreover, the model enhanced the transparency of the decision-making process, providing clinicians with a reference for formulating personalized treatment plans.</p>\",\"PeriodicalId\":9580,\"journal\":{\"name\":\"Cancer Science\",\"volume\":\"115 11\",\"pages\":\"3755-3766\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11531952/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer Science\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/cas.16327\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Science","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cas.16327","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
Prostate cancer treatment recommendation study based on machine learning and SHAP interpreter
This study utilized data from 140,294 prostate cancer cases from the Surveillance, Epidemiology, and End Results (SEER) database. Here, 10 different machine learning algorithms were applied to develop treatment options for predicting patients with prostate cancer, differentiating between surgical and non-surgical treatments. The performances of the algorithms were measured using the area under the receiver operating characteristic curve (AUC), accuracy, sensitivity, specificity, positive predictive value, negative predictive value. The Shapley Additive Explanations (SHAP) method was employed to investigate the key factors influencing the prediction process. Survival analysis methods were used to compare the survival rates of different treatment options. The CatBoost model yielded the best results (AUC = 0.939, sensitivity = 0.877, accuracy = 0.877). SHAP interpreters revealed that the T stage, cancer stage, age, cores positive percentage, prostate-specific antigen, and Gleason score were the most critical factors in predicting treatment options. The study found that surgery significantly improved survival rates, with patients undergoing surgery experiencing a 20.36% increase in 10-year survival rates compared with those receiving non-surgical treatments. Among surgical options, radical prostatectomy had the highest 10-year survival rate at 89.2%. This study successfully developed a predictive model to guide treatment decisions for prostate cancer. Moreover, the model enhanced the transparency of the decision-making process, providing clinicians with a reference for formulating personalized treatment plans.
期刊介绍:
Cancer Science (formerly Japanese Journal of Cancer Research) is a monthly publication of the Japanese Cancer Association. First published in 1907, the Journal continues to publish original articles, editorials, and letters to the editor, describing original research in the fields of basic, translational and clinical cancer research. The Journal also accepts reports and case reports.
Cancer Science aims to present highly significant and timely findings that have a significant clinical impact on oncologists or that may alter the disease concept of a tumor. The Journal will not publish case reports that describe a rare tumor or condition without new findings to be added to previous reports; combination of different tumors without new suggestive findings for oncological research; remarkable effect of already known treatments without suggestive data to explain the exceptional result. Review articles may also be published.