{"title":"高质量的专家注释提高了骨肉瘤 X 射线诊断人工智能模型的准确性。","authors":"Joe Hasei, Ryuichi Nakahara, Yujiro Otsuka, Yusuke Nakamura, Tamiya Hironari, Naoaki Kahara, Shinji Miwa, Shusa Ohshika, Shunji Nishimura, Kunihiro Ikuta, Shuhei Osaki, Aki Yoshida, Tomohiro Fujiwara, Eiji Nakata, Toshiyuki Kunisada, Toshifumi Ozaki","doi":"10.1111/cas.16330","DOIUrl":null,"url":null,"abstract":"<p>Primary malignant bone tumors, such as osteosarcoma, significantly affect the pediatric and young adult populations, necessitating early diagnosis for effective treatment. This study developed a high-performance artificial intelligence (AI) model to detect osteosarcoma from X-ray images using highly accurate annotated data to improve diagnostic accuracy at initial consultations. Traditional models trained on unannotated data have shown limited success, with sensitivities of approximately 60%–70%. In contrast, our model used a data-centric approach with annotations from an experienced oncologist, achieving a sensitivity of 95.52%, specificity of 96.21%, and an area under the curve of 0.989. The model was trained using 468 X-ray images from 31 osteosarcoma cases and 378 normal knee images with a strategy to maximize diversity in the training and validation sets. It was evaluated using an independent dataset of 268 osteosarcoma and 554 normal knee images to ensure generalizability. By applying the U-net architecture and advanced image processing techniques such as renormalization and affine transformations, our AI model outperforms existing models, reducing missed diagnoses and enhancing patient outcomes by facilitating earlier treatment. This study highlights the importance of high-quality training data and advocates a shift towards data-centric AI development in medical imaging. These insights can be extended to other rare cancers and diseases, underscoring the potential of AI in transforming diagnostic processes in oncology. The integration of this AI model into clinical workflows could support physicians in early osteosarcoma detection, thereby improving diagnostic accuracy and patient care.</p>","PeriodicalId":9580,"journal":{"name":"Cancer Science","volume":"115 11","pages":"3695-3704"},"PeriodicalIF":4.5000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11531945/pdf/","citationCount":"0","resultStr":"{\"title\":\"High-quality expert annotations enhance artificial intelligence model accuracy for osteosarcoma X-ray diagnosis\",\"authors\":\"Joe Hasei, Ryuichi Nakahara, Yujiro Otsuka, Yusuke Nakamura, Tamiya Hironari, Naoaki Kahara, Shinji Miwa, Shusa Ohshika, Shunji Nishimura, Kunihiro Ikuta, Shuhei Osaki, Aki Yoshida, Tomohiro Fujiwara, Eiji Nakata, Toshiyuki Kunisada, Toshifumi Ozaki\",\"doi\":\"10.1111/cas.16330\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Primary malignant bone tumors, such as osteosarcoma, significantly affect the pediatric and young adult populations, necessitating early diagnosis for effective treatment. This study developed a high-performance artificial intelligence (AI) model to detect osteosarcoma from X-ray images using highly accurate annotated data to improve diagnostic accuracy at initial consultations. Traditional models trained on unannotated data have shown limited success, with sensitivities of approximately 60%–70%. In contrast, our model used a data-centric approach with annotations from an experienced oncologist, achieving a sensitivity of 95.52%, specificity of 96.21%, and an area under the curve of 0.989. The model was trained using 468 X-ray images from 31 osteosarcoma cases and 378 normal knee images with a strategy to maximize diversity in the training and validation sets. It was evaluated using an independent dataset of 268 osteosarcoma and 554 normal knee images to ensure generalizability. By applying the U-net architecture and advanced image processing techniques such as renormalization and affine transformations, our AI model outperforms existing models, reducing missed diagnoses and enhancing patient outcomes by facilitating earlier treatment. This study highlights the importance of high-quality training data and advocates a shift towards data-centric AI development in medical imaging. These insights can be extended to other rare cancers and diseases, underscoring the potential of AI in transforming diagnostic processes in oncology. The integration of this AI model into clinical workflows could support physicians in early osteosarcoma detection, thereby improving diagnostic accuracy and patient care.</p>\",\"PeriodicalId\":9580,\"journal\":{\"name\":\"Cancer Science\",\"volume\":\"115 11\",\"pages\":\"3695-3704\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11531945/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer Science\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/cas.16330\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Science","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cas.16330","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
High-quality expert annotations enhance artificial intelligence model accuracy for osteosarcoma X-ray diagnosis
Primary malignant bone tumors, such as osteosarcoma, significantly affect the pediatric and young adult populations, necessitating early diagnosis for effective treatment. This study developed a high-performance artificial intelligence (AI) model to detect osteosarcoma from X-ray images using highly accurate annotated data to improve diagnostic accuracy at initial consultations. Traditional models trained on unannotated data have shown limited success, with sensitivities of approximately 60%–70%. In contrast, our model used a data-centric approach with annotations from an experienced oncologist, achieving a sensitivity of 95.52%, specificity of 96.21%, and an area under the curve of 0.989. The model was trained using 468 X-ray images from 31 osteosarcoma cases and 378 normal knee images with a strategy to maximize diversity in the training and validation sets. It was evaluated using an independent dataset of 268 osteosarcoma and 554 normal knee images to ensure generalizability. By applying the U-net architecture and advanced image processing techniques such as renormalization and affine transformations, our AI model outperforms existing models, reducing missed diagnoses and enhancing patient outcomes by facilitating earlier treatment. This study highlights the importance of high-quality training data and advocates a shift towards data-centric AI development in medical imaging. These insights can be extended to other rare cancers and diseases, underscoring the potential of AI in transforming diagnostic processes in oncology. The integration of this AI model into clinical workflows could support physicians in early osteosarcoma detection, thereby improving diagnostic accuracy and patient care.
期刊介绍:
Cancer Science (formerly Japanese Journal of Cancer Research) is a monthly publication of the Japanese Cancer Association. First published in 1907, the Journal continues to publish original articles, editorials, and letters to the editor, describing original research in the fields of basic, translational and clinical cancer research. The Journal also accepts reports and case reports.
Cancer Science aims to present highly significant and timely findings that have a significant clinical impact on oncologists or that may alter the disease concept of a tumor. The Journal will not publish case reports that describe a rare tumor or condition without new findings to be added to previous reports; combination of different tumors without new suggestive findings for oncological research; remarkable effect of already known treatments without suggestive data to explain the exceptional result. Review articles may also be published.