综合表观基因组暴露特征发现。

IF 3 4区 医学 Q2 GENETICS & HEREDITY
Epigenomics Pub Date : 2024-01-01 Epub Date: 2024-09-03 DOI:10.1080/17501911.2024.2375187
Jared Schuetter, Angela Minard-Smith, Brandon Hill, Jennifer L Beare, Alexandria Vornholt, Thomas W Burke, Vel Murugan, Anthony K Smith, Thiruppavai Chandrasekaran, Hiba J Shamma, Sarah C Kahaian, Keegan L Fillinger, Mary Anne S Amper, Wan-Sze Cheng, Yongchao Ge, Mary Catherine George, Kristy Guevara, Nora Lovette-Okwara, Avinash Mahajan, Nada Marjanovic, Natalia Mendelev, Vance G Fowler, Micah T McClain, Clare M Miller, Sagie Mofsowitz, Venugopalan D Nair, German Nudelman, Thomas G Evans, Flora Castellino, Irene Ramos, Stas Rirak, Frederique Ruf-Zamojski, Nitish Seenarine, Alessandra Soares-Shanoski, Sindhu Vangeti, Mital Vasoya, Xuechen Yu, Elena Zaslavsky, Lishomwa C Ndhlovu, Michael J Corley, Scott Bowler, Steven G Deeks, Andrew G Letizia, Stuart C Sealfon, Christopher W Woods, Rachel R Spurbeck
{"title":"综合表观基因组暴露特征发现。","authors":"Jared Schuetter, Angela Minard-Smith, Brandon Hill, Jennifer L Beare, Alexandria Vornholt, Thomas W Burke, Vel Murugan, Anthony K Smith, Thiruppavai Chandrasekaran, Hiba J Shamma, Sarah C Kahaian, Keegan L Fillinger, Mary Anne S Amper, Wan-Sze Cheng, Yongchao Ge, Mary Catherine George, Kristy Guevara, Nora Lovette-Okwara, Avinash Mahajan, Nada Marjanovic, Natalia Mendelev, Vance G Fowler, Micah T McClain, Clare M Miller, Sagie Mofsowitz, Venugopalan D Nair, German Nudelman, Thomas G Evans, Flora Castellino, Irene Ramos, Stas Rirak, Frederique Ruf-Zamojski, Nitish Seenarine, Alessandra Soares-Shanoski, Sindhu Vangeti, Mital Vasoya, Xuechen Yu, Elena Zaslavsky, Lishomwa C Ndhlovu, Michael J Corley, Scott Bowler, Steven G Deeks, Andrew G Letizia, Stuart C Sealfon, Christopher W Woods, Rachel R Spurbeck","doi":"10.1080/17501911.2024.2375187","DOIUrl":null,"url":null,"abstract":"<p><p><b>Aim:</b> The epigenome influences gene regulation and phenotypes in response to exposures. Epigenome assessment can determine exposure history aiding in diagnosis.<b>Materials & methods:</b> Here we developed and implemented a machine learning algorithm, the exposure signature discovery algorithm (ESDA), to identify the most important features present in multiple epigenomic and transcriptomic datasets to produce an integrated exposure signature (ES).<b>Results:</b> Signatures were developed for seven exposures including <i>Staphylococcus aureus</i>, human immunodeficiency virus, SARS-CoV-2, influenza A (H3N2) virus and <i>Bacillus anthracis</i> vaccinations. ESs differed in the assays and features selected and predictive value.<b>Conclusion:</b> Integrated ESs can potentially be utilized for diagnosis or forensic attribution. The ESDA identifies the most distinguishing features enabling diagnostic panel development for future precision health deployment.</p>","PeriodicalId":11959,"journal":{"name":"Epigenomics","volume":" ","pages":"1013-1029"},"PeriodicalIF":3.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11404615/pdf/","citationCount":"0","resultStr":"{\"title\":\"Integrated epigenomic exposure signature discovery.\",\"authors\":\"Jared Schuetter, Angela Minard-Smith, Brandon Hill, Jennifer L Beare, Alexandria Vornholt, Thomas W Burke, Vel Murugan, Anthony K Smith, Thiruppavai Chandrasekaran, Hiba J Shamma, Sarah C Kahaian, Keegan L Fillinger, Mary Anne S Amper, Wan-Sze Cheng, Yongchao Ge, Mary Catherine George, Kristy Guevara, Nora Lovette-Okwara, Avinash Mahajan, Nada Marjanovic, Natalia Mendelev, Vance G Fowler, Micah T McClain, Clare M Miller, Sagie Mofsowitz, Venugopalan D Nair, German Nudelman, Thomas G Evans, Flora Castellino, Irene Ramos, Stas Rirak, Frederique Ruf-Zamojski, Nitish Seenarine, Alessandra Soares-Shanoski, Sindhu Vangeti, Mital Vasoya, Xuechen Yu, Elena Zaslavsky, Lishomwa C Ndhlovu, Michael J Corley, Scott Bowler, Steven G Deeks, Andrew G Letizia, Stuart C Sealfon, Christopher W Woods, Rachel R Spurbeck\",\"doi\":\"10.1080/17501911.2024.2375187\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Aim:</b> The epigenome influences gene regulation and phenotypes in response to exposures. Epigenome assessment can determine exposure history aiding in diagnosis.<b>Materials & methods:</b> Here we developed and implemented a machine learning algorithm, the exposure signature discovery algorithm (ESDA), to identify the most important features present in multiple epigenomic and transcriptomic datasets to produce an integrated exposure signature (ES).<b>Results:</b> Signatures were developed for seven exposures including <i>Staphylococcus aureus</i>, human immunodeficiency virus, SARS-CoV-2, influenza A (H3N2) virus and <i>Bacillus anthracis</i> vaccinations. ESs differed in the assays and features selected and predictive value.<b>Conclusion:</b> Integrated ESs can potentially be utilized for diagnosis or forensic attribution. The ESDA identifies the most distinguishing features enabling diagnostic panel development for future precision health deployment.</p>\",\"PeriodicalId\":11959,\"journal\":{\"name\":\"Epigenomics\",\"volume\":\" \",\"pages\":\"1013-1029\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11404615/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Epigenomics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/17501911.2024.2375187\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epigenomics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17501911.2024.2375187","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/3 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

目的:表观基因组影响基因调控和表型对暴露的反应。材料与方法:在此,我们开发并实施了一种机器学习算法--暴露特征发现算法(ESDA),以识别多个表观基因组和转录组数据集中存在的最重要特征,从而生成综合暴露特征(ES):为七种暴露开发了特征,包括金黄色葡萄球菌、人类免疫缺陷病毒、SARS-CoV-2、甲型流感(H3N2)病毒和炭疽杆菌疫苗接种。ES 在所选检测方法和特征以及预测价值方面存在差异:综合 ES 有可能用于诊断或法医归因。ESDA确定了最显著的特征,有助于为未来的精准健康部署开发诊断面板。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integrated epigenomic exposure signature discovery.

Aim: The epigenome influences gene regulation and phenotypes in response to exposures. Epigenome assessment can determine exposure history aiding in diagnosis.Materials & methods: Here we developed and implemented a machine learning algorithm, the exposure signature discovery algorithm (ESDA), to identify the most important features present in multiple epigenomic and transcriptomic datasets to produce an integrated exposure signature (ES).Results: Signatures were developed for seven exposures including Staphylococcus aureus, human immunodeficiency virus, SARS-CoV-2, influenza A (H3N2) virus and Bacillus anthracis vaccinations. ESs differed in the assays and features selected and predictive value.Conclusion: Integrated ESs can potentially be utilized for diagnosis or forensic attribution. The ESDA identifies the most distinguishing features enabling diagnostic panel development for future precision health deployment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Epigenomics
Epigenomics GENETICS & HEREDITY-
CiteScore
5.80
自引率
2.60%
发文量
95
审稿时长
>12 weeks
期刊介绍: Epigenomics provides the forum to address the rapidly progressing research developments in this ever-expanding field; to report on the major challenges ahead and critical advances that are propelling the science forward. The journal delivers this information in concise, at-a-glance article formats – invaluable to a time constrained community. Substantial developments in our current knowledge and understanding of genomics and epigenetics are constantly being made, yet this field is still in its infancy. Epigenomics provides a critical overview of the latest and most significant advances as they unfold and explores their potential application in the clinical setting.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信