Xueling Zhang, Jini Qiu, Yalan Feng, Jijia Zheng, Jun Xiang, Jiayu Gu, Kun Shan, Qian Shi
{"title":"在福氏内皮角膜营养不良小鼠模型中使用苯胺蓝染色法快速检测古塔斑块面积。","authors":"Xueling Zhang, Jini Qiu, Yalan Feng, Jijia Zheng, Jun Xiang, Jiayu Gu, Kun Shan, Qian Shi","doi":"10.1111/1440-1681.13921","DOIUrl":null,"url":null,"abstract":"<p>Fuchs endothelial corneal dystrophy (FECD) is a leading cause of corneal endothelial degeneration resulting in impaired visual acuity. Excessive deposition of extracellular matrix (guttae) on Descemet's membrane (DM) is the hallmark of FECD. We sought to detect the guttae area rapidly using aniline blue (AB) staining in FECD mouse model. FECD mouse model was established via ultraviolet A (UVA) exposure. Masson's trichrome staining was utilized to stain the corneal sections. AB staining was utilized to stain both whole cornea tissues and stripped Descemet's membrane-endothelium complex (DMEC) flat mounts, while immunofluorescence staining of collagen I was employed to stain guttae areas. In Masson's trichrome staining, corneal collagen fibrils were stained blue with AB. The DMEC flat mounts were stained into relative dark blue areas and relative light blue areas using 2% AB staining. The areas of dark blue could almost overlap with collagen I-positive areas, and have an acellular centre and a moderately distinct boundary line with the surrounding corneal endothelial cells. In conclusion, AB staining is a rapid and effective method for the evaluation of the guttae areas in the FECD mouse model.</p>","PeriodicalId":50684,"journal":{"name":"Clinical and Experimental Pharmacology and Physiology","volume":"51 10","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rapid detection of guttae area using aniline blue staining in Fuchs endothelial corneal dystrophy mouse model\",\"authors\":\"Xueling Zhang, Jini Qiu, Yalan Feng, Jijia Zheng, Jun Xiang, Jiayu Gu, Kun Shan, Qian Shi\",\"doi\":\"10.1111/1440-1681.13921\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Fuchs endothelial corneal dystrophy (FECD) is a leading cause of corneal endothelial degeneration resulting in impaired visual acuity. Excessive deposition of extracellular matrix (guttae) on Descemet's membrane (DM) is the hallmark of FECD. We sought to detect the guttae area rapidly using aniline blue (AB) staining in FECD mouse model. FECD mouse model was established via ultraviolet A (UVA) exposure. Masson's trichrome staining was utilized to stain the corneal sections. AB staining was utilized to stain both whole cornea tissues and stripped Descemet's membrane-endothelium complex (DMEC) flat mounts, while immunofluorescence staining of collagen I was employed to stain guttae areas. In Masson's trichrome staining, corneal collagen fibrils were stained blue with AB. The DMEC flat mounts were stained into relative dark blue areas and relative light blue areas using 2% AB staining. The areas of dark blue could almost overlap with collagen I-positive areas, and have an acellular centre and a moderately distinct boundary line with the surrounding corneal endothelial cells. In conclusion, AB staining is a rapid and effective method for the evaluation of the guttae areas in the FECD mouse model.</p>\",\"PeriodicalId\":50684,\"journal\":{\"name\":\"Clinical and Experimental Pharmacology and Physiology\",\"volume\":\"51 10\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical and Experimental Pharmacology and Physiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/1440-1681.13921\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical and Experimental Pharmacology and Physiology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1440-1681.13921","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
摘要
富克斯内皮性角膜营养不良症(FECD)是导致视力受损的角膜内皮变性的主要原因。细胞外基质(guttae)在Descemet膜(DM)上的过度沉积是FECD的特征。我们试图在 FECD 小鼠模型中使用苯胺蓝(AB)染色法快速检测细胞外基质(guttae)区域。FECD 小鼠模型是通过紫外线 A(UVA)照射建立的。用 Masson 三色染色法对角膜切片进行染色。AB染色法用于染色整个角膜组织和剥离的Descemet膜-内皮复合体(DMEC)平片,而胶原蛋白I免疫荧光染色法则用于染色胶质细胞区域。在 Masson 三色染色法中,角膜胶原纤维被 AB 染成蓝色。用 2% AB 染色法将 DMEC 平片染色成相对深蓝色区域和相对浅蓝色区域。深蓝色区域几乎与胶原蛋白 I 阳性区域重叠,中心呈无细胞状,与周围角膜内皮细胞的边界线适度分明。总之,AB 染色是一种快速有效的方法,可用于评估 FECD 小鼠模型中的神经胶质区域。
Rapid detection of guttae area using aniline blue staining in Fuchs endothelial corneal dystrophy mouse model
Fuchs endothelial corneal dystrophy (FECD) is a leading cause of corneal endothelial degeneration resulting in impaired visual acuity. Excessive deposition of extracellular matrix (guttae) on Descemet's membrane (DM) is the hallmark of FECD. We sought to detect the guttae area rapidly using aniline blue (AB) staining in FECD mouse model. FECD mouse model was established via ultraviolet A (UVA) exposure. Masson's trichrome staining was utilized to stain the corneal sections. AB staining was utilized to stain both whole cornea tissues and stripped Descemet's membrane-endothelium complex (DMEC) flat mounts, while immunofluorescence staining of collagen I was employed to stain guttae areas. In Masson's trichrome staining, corneal collagen fibrils were stained blue with AB. The DMEC flat mounts were stained into relative dark blue areas and relative light blue areas using 2% AB staining. The areas of dark blue could almost overlap with collagen I-positive areas, and have an acellular centre and a moderately distinct boundary line with the surrounding corneal endothelial cells. In conclusion, AB staining is a rapid and effective method for the evaluation of the guttae areas in the FECD mouse model.
期刊介绍:
Clinical and Experimental Pharmacology and Physiology is an international journal founded in 1974 by Mike Rand, Austin Doyle, John Coghlan and Paul Korner. Our focus is new frontiers in physiology and pharmacology, emphasizing the translation of basic research to clinical practice. We publish original articles, invited reviews and our exciting, cutting-edge Frontiers-in-Research series’.