GMXPolymer:基于 GROMACS 的生成聚合算法。

IF 2.1 4区 化学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Jianchuan Liu, Haiyan Lin, Xun Li
{"title":"GMXPolymer:基于 GROMACS 的生成聚合算法。","authors":"Jianchuan Liu,&nbsp;Haiyan Lin,&nbsp;Xun Li","doi":"10.1007/s00894-024-06119-4","DOIUrl":null,"url":null,"abstract":"<div><h3>Context</h3><p>This work introduces a method for generating generalized structures of amorphous polymers using simulated polymerization and molecular dynamics equilibration, with a particular focus on amorphous polymers. The techniques and algorithms used in this method are described in the main text, and example input scripts are provided for the GMXPolymer code, which is based on the GROMACS molecular dynamics package. To demonstrate the efficacy of our method, we apply it to different glassy polymers exhibiting varying degrees of functionality, polarity, and rigidity. The reliability of the method is validated by comparing simulation results with experimental data in various structural and thermal properties, both of which show excellent agreement.</p><h3>Methods</h3><p>This work implements the GMXPolymer simulated polymerization algorithm on the GROMACS program. GMXPolymer code controls the main polymerization loop. The energy minimizations and molecular dynamics simulations use the GROMACS program called by the GMXPolymer code. A new ITP file is generated when a new bond is formed, and the necessary additions to the ITP file are made to include new bonds, angles, and dihedrals. In preparing the ITP file of the monomer, the charge of the reactive atom must be modified before the code runs so that it is a correct value after bonding.</p></div>","PeriodicalId":651,"journal":{"name":"Journal of Molecular Modeling","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GMXPolymer: a generated polymerization algorithm based on GROMACS\",\"authors\":\"Jianchuan Liu,&nbsp;Haiyan Lin,&nbsp;Xun Li\",\"doi\":\"10.1007/s00894-024-06119-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Context</h3><p>This work introduces a method for generating generalized structures of amorphous polymers using simulated polymerization and molecular dynamics equilibration, with a particular focus on amorphous polymers. The techniques and algorithms used in this method are described in the main text, and example input scripts are provided for the GMXPolymer code, which is based on the GROMACS molecular dynamics package. To demonstrate the efficacy of our method, we apply it to different glassy polymers exhibiting varying degrees of functionality, polarity, and rigidity. The reliability of the method is validated by comparing simulation results with experimental data in various structural and thermal properties, both of which show excellent agreement.</p><h3>Methods</h3><p>This work implements the GMXPolymer simulated polymerization algorithm on the GROMACS program. GMXPolymer code controls the main polymerization loop. The energy minimizations and molecular dynamics simulations use the GROMACS program called by the GMXPolymer code. A new ITP file is generated when a new bond is formed, and the necessary additions to the ITP file are made to include new bonds, angles, and dihedrals. In preparing the ITP file of the monomer, the charge of the reactive atom must be modified before the code runs so that it is a correct value after bonding.</p></div>\",\"PeriodicalId\":651,\"journal\":{\"name\":\"Journal of Molecular Modeling\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Modeling\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00894-024-06119-4\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Modeling","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00894-024-06119-4","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:本研究介绍了一种利用模拟聚合和分子动力学平衡生成无定形聚合物广义结构的方法,尤其侧重于无定形聚合物。正文介绍了该方法使用的技术和算法,并提供了基于 GROMACS 分子动力学软件包的 GMXPolymer 代码的输入脚本示例。为了证明我们的方法的有效性,我们将其应用于表现出不同官能度、极性和刚性的不同玻璃态聚合物。通过比较各种结构和热特性的模拟结果与实验数据,验证了该方法的可靠性:方法:这项工作在 GROMACS 程序上实现了 GMXPolymer 模拟聚合算法。GMXPolymer 代码控制主聚合循环。能量最小化和分子动力学模拟使用由 GMXPolymer 代码调用的 GROMACS 程序。当形成一个新的键时,就会生成一个新的 ITP 文件,并对 ITP 文件进行必要的添加,以包括新的键、角度和二面体。在准备单体的 ITP 文件时,必须在代码运行前修改反应原子的电荷,使其在成键后为正确值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

GMXPolymer: a generated polymerization algorithm based on GROMACS

GMXPolymer: a generated polymerization algorithm based on GROMACS

Context

This work introduces a method for generating generalized structures of amorphous polymers using simulated polymerization and molecular dynamics equilibration, with a particular focus on amorphous polymers. The techniques and algorithms used in this method are described in the main text, and example input scripts are provided for the GMXPolymer code, which is based on the GROMACS molecular dynamics package. To demonstrate the efficacy of our method, we apply it to different glassy polymers exhibiting varying degrees of functionality, polarity, and rigidity. The reliability of the method is validated by comparing simulation results with experimental data in various structural and thermal properties, both of which show excellent agreement.

Methods

This work implements the GMXPolymer simulated polymerization algorithm on the GROMACS program. GMXPolymer code controls the main polymerization loop. The energy minimizations and molecular dynamics simulations use the GROMACS program called by the GMXPolymer code. A new ITP file is generated when a new bond is formed, and the necessary additions to the ITP file are made to include new bonds, angles, and dihedrals. In preparing the ITP file of the monomer, the charge of the reactive atom must be modified before the code runs so that it is a correct value after bonding.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Molecular Modeling
Journal of Molecular Modeling 化学-化学综合
CiteScore
3.50
自引率
4.50%
发文量
362
审稿时长
2.9 months
期刊介绍: The Journal of Molecular Modeling focuses on "hardcore" modeling, publishing high-quality research and reports. Founded in 1995 as a purely electronic journal, it has adapted its format to include a full-color print edition, and adjusted its aims and scope fit the fast-changing field of molecular modeling, with a particular focus on three-dimensional modeling. Today, the journal covers all aspects of molecular modeling including life science modeling; materials modeling; new methods; and computational chemistry. Topics include computer-aided molecular design; rational drug design, de novo ligand design, receptor modeling and docking; cheminformatics, data analysis, visualization and mining; computational medicinal chemistry; homology modeling; simulation of peptides, DNA and other biopolymers; quantitative structure-activity relationships (QSAR) and ADME-modeling; modeling of biological reaction mechanisms; and combined experimental and computational studies in which calculations play a major role.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信