调节性酪氨酸残基的修饰会使人类 Hsp90α 在与辅助伴侣和客户的相互作用中产生偏差。

IF 4.7 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Yuantao Huo , Rishabh Karnawat , Lixia Liu , Robert A. Knieß , Maike Groß , Xuemei Chen , Matthias P. Mayer
{"title":"调节性酪氨酸残基的修饰会使人类 Hsp90α 在与辅助伴侣和客户的相互作用中产生偏差。","authors":"Yuantao Huo ,&nbsp;Rishabh Karnawat ,&nbsp;Lixia Liu ,&nbsp;Robert A. Knieß ,&nbsp;Maike Groß ,&nbsp;Xuemei Chen ,&nbsp;Matthias P. Mayer","doi":"10.1016/j.jmb.2024.168772","DOIUrl":null,"url":null,"abstract":"<div><p>The highly conserved Hsp90 chaperones control stability and activity of many essential signaling and regulatory proteins including many protein kinases, E3 ligases and transcription factors. Thereby, Hsp90s couple cellular homeostasis of the proteome to cell fate decisions. High-throughput mass spectrometry revealed 178 and 169 posttranslational modifications (PTMs) for human cytosolic Hsp90α and Hsp90β, but for only a few of the modifications the physiological consequences are investigated in some detail. In this study, we explored the suitability of the yeast model system for the identification of key regulatory residues in human Hsp90α. Replacement of three tyrosine residues known to be phosphorylated by phosphomimetic glutamate and by non-phosphorylatable phenylalanine individually and in combination influenced yeast growth and the maturation of 7 different Hsp90 clients in distinct ways. Furthermore, wild-type and mutant Hsp90 differed in their ability to stabilize known clients when expressed in HepG2 <em>HSP90AA1</em><sup>−/−</sup> cells. The purified mutant proteins differed in their interaction with the cochaperones Aha1, Cdc37, Hop and p23 and in their support of the maturation of glucocorticoid receptor ligand binding domain <em>in vitro</em>. <em>In vivo</em> and <em>in vitro</em> data correspond well to each other confirming that the yeast system is suitable for the identification of key regulatory sites in human Hsp90s. Our findings indicate that even closely related clients are affected differently by the amino acid replacements in the investigated positions, suggesting that PTMs could bias Hsp90s client specificity.</p></div>","PeriodicalId":369,"journal":{"name":"Journal of Molecular Biology","volume":"436 22","pages":"Article 168772"},"PeriodicalIF":4.7000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022283624003929/pdfft?md5=69c81d021431476f9dc084f49c84518e&pid=1-s2.0-S0022283624003929-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Modification of Regulatory Tyrosine Residues Biases Human Hsp90α in its Interactions with Cochaperones and Clients\",\"authors\":\"Yuantao Huo ,&nbsp;Rishabh Karnawat ,&nbsp;Lixia Liu ,&nbsp;Robert A. Knieß ,&nbsp;Maike Groß ,&nbsp;Xuemei Chen ,&nbsp;Matthias P. Mayer\",\"doi\":\"10.1016/j.jmb.2024.168772\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The highly conserved Hsp90 chaperones control stability and activity of many essential signaling and regulatory proteins including many protein kinases, E3 ligases and transcription factors. Thereby, Hsp90s couple cellular homeostasis of the proteome to cell fate decisions. High-throughput mass spectrometry revealed 178 and 169 posttranslational modifications (PTMs) for human cytosolic Hsp90α and Hsp90β, but for only a few of the modifications the physiological consequences are investigated in some detail. In this study, we explored the suitability of the yeast model system for the identification of key regulatory residues in human Hsp90α. Replacement of three tyrosine residues known to be phosphorylated by phosphomimetic glutamate and by non-phosphorylatable phenylalanine individually and in combination influenced yeast growth and the maturation of 7 different Hsp90 clients in distinct ways. Furthermore, wild-type and mutant Hsp90 differed in their ability to stabilize known clients when expressed in HepG2 <em>HSP90AA1</em><sup>−/−</sup> cells. The purified mutant proteins differed in their interaction with the cochaperones Aha1, Cdc37, Hop and p23 and in their support of the maturation of glucocorticoid receptor ligand binding domain <em>in vitro</em>. <em>In vivo</em> and <em>in vitro</em> data correspond well to each other confirming that the yeast system is suitable for the identification of key regulatory sites in human Hsp90s. Our findings indicate that even closely related clients are affected differently by the amino acid replacements in the investigated positions, suggesting that PTMs could bias Hsp90s client specificity.</p></div>\",\"PeriodicalId\":369,\"journal\":{\"name\":\"Journal of Molecular Biology\",\"volume\":\"436 22\",\"pages\":\"Article 168772\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0022283624003929/pdfft?md5=69c81d021431476f9dc084f49c84518e&pid=1-s2.0-S0022283624003929-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022283624003929\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022283624003929","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

高度保守的 Hsp90 合子控制着许多重要信号转导和调节蛋白的稳定性和活性,包括许多蛋白激酶、E3 连接酶和转录因子。因此,Hsp90 将蛋白质组的细胞平衡与细胞命运的决定联系在一起。高通量质谱分析揭示了人类细胞质 Hsp90α 和 Hsp90β 的 178 和 169 种翻译后修饰(PTM),但只有少数修饰的生理后果得到了较详细的研究。在这项研究中,我们探索了酵母模型系统是否适合用于鉴定人类 Hsp90α 中的关键调控残基。用拟磷酸化谷氨酸和非磷酸化苯丙氨酸单独或联合取代三个已知被磷酸化的酪氨酸残基,会以不同的方式影响酵母的生长和 7 种不同 Hsp90 客户的成熟。此外,在 HepG2 HSP90AA1-/- 细胞中表达时,野生型和突变型 Hsp90 稳定已知客户的能力各不相同。纯化的突变体蛋白在与辅助伴侣Aha1、Cdc37、Hop和p23的相互作用以及在体外支持糖皮质激素受体配体结合域的成熟方面存在差异。体内和体外数据相互吻合,证实酵母系统适用于鉴定人类 Hsp90s 的关键调控位点。我们的研究结果表明,即使是密切相关的客户也会受到所研究位置上氨基酸替换的不同影响,这表明 PTMs 可能会影响 Hsp90 的客户特异性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Modification of Regulatory Tyrosine Residues Biases Human Hsp90α in its Interactions with Cochaperones and Clients

Modification of Regulatory Tyrosine Residues Biases Human Hsp90α in its Interactions with Cochaperones and Clients

The highly conserved Hsp90 chaperones control stability and activity of many essential signaling and regulatory proteins including many protein kinases, E3 ligases and transcription factors. Thereby, Hsp90s couple cellular homeostasis of the proteome to cell fate decisions. High-throughput mass spectrometry revealed 178 and 169 posttranslational modifications (PTMs) for human cytosolic Hsp90α and Hsp90β, but for only a few of the modifications the physiological consequences are investigated in some detail. In this study, we explored the suitability of the yeast model system for the identification of key regulatory residues in human Hsp90α. Replacement of three tyrosine residues known to be phosphorylated by phosphomimetic glutamate and by non-phosphorylatable phenylalanine individually and in combination influenced yeast growth and the maturation of 7 different Hsp90 clients in distinct ways. Furthermore, wild-type and mutant Hsp90 differed in their ability to stabilize known clients when expressed in HepG2 HSP90AA1−/− cells. The purified mutant proteins differed in their interaction with the cochaperones Aha1, Cdc37, Hop and p23 and in their support of the maturation of glucocorticoid receptor ligand binding domain in vitro. In vivo and in vitro data correspond well to each other confirming that the yeast system is suitable for the identification of key regulatory sites in human Hsp90s. Our findings indicate that even closely related clients are affected differently by the amino acid replacements in the investigated positions, suggesting that PTMs could bias Hsp90s client specificity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Molecular Biology
Journal of Molecular Biology 生物-生化与分子生物学
CiteScore
11.30
自引率
1.80%
发文量
412
审稿时长
28 days
期刊介绍: Journal of Molecular Biology (JMB) provides high quality, comprehensive and broad coverage in all areas of molecular biology. The journal publishes original scientific research papers that provide mechanistic and functional insights and report a significant advance to the field. The journal encourages the submission of multidisciplinary studies that use complementary experimental and computational approaches to address challenging biological questions. Research areas include but are not limited to: Biomolecular interactions, signaling networks, systems biology; Cell cycle, cell growth, cell differentiation; Cell death, autophagy; Cell signaling and regulation; Chemical biology; Computational biology, in combination with experimental studies; DNA replication, repair, and recombination; Development, regenerative biology, mechanistic and functional studies of stem cells; Epigenetics, chromatin structure and function; Gene expression; Membrane processes, cell surface proteins and cell-cell interactions; Methodological advances, both experimental and theoretical, including databases; Microbiology, virology, and interactions with the host or environment; Microbiota mechanistic and functional studies; Nuclear organization; Post-translational modifications, proteomics; Processing and function of biologically important macromolecules and complexes; Molecular basis of disease; RNA processing, structure and functions of non-coding RNAs, transcription; Sorting, spatiotemporal organization, trafficking; Structural biology; Synthetic biology; Translation, protein folding, chaperones, protein degradation and quality control.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信