{"title":"时空加权神经网络揭示北太平洋表层海水 pCO2 分布及其背后的环境机制","authors":"","doi":"10.1016/j.jag.2024.104120","DOIUrl":null,"url":null,"abstract":"<div><p>The North Pacific Ocean plays a pivotal role as a carbon sink within the global carbon cycle. However, a comprehensive understanding of the spatiotemporal dynamics of carbon dioxide concentration and its determinants in this domain remains elusive due to its vast dimensions and the intricacies of influencing factors, with previous research on carbon dioxide partial pressure in the North Pacific Ocean also being relatively scarce. While prevalent machine learning methodologies have been extensively applied to predict the partial pressure of ocean carbon dioxide (pCO<sub>2</sub>), their limited interpretability has impeded substantial progress in elucidating the underlying mechanisms. This study introduces a gridded spatiotemporal neural network weighted regression (GSTNNWR) model to illuminate temporal and spatial relationships among relevant environmental variables and pCO<sub>2</sub>. The GSTNNWR model achieves high-precision and high-resolution forecasts of surface pCO<sub>2</sub> in the North Pacific Ocean, demonstrating commendable performance (R<sup>2</sup> = 0.863 and RMSE=15.123 µatm). Simultaneously, we obtain a quantitative characterization of how various environmental factors influence pCO2 across different temporal and spatial scales. Results show a dominant positive effect of temperature on the pCO2, with an averaged normalized coefficient of 0.28, and variability in the effects of chlorophyll and salinity on the pCO<sub>2</sub> at different spatial and temporal locations and temperatures, whose average normalized coefficients are −0.10 and −0.04.The findings of our study will provide insights into the mechanisms and interactions within the North Pacific carbon cycle, contributing to a better understanding of ocean carbon sink formation and the dynamic regulation of the North Pacific carbon cycle.</p></div>","PeriodicalId":73423,"journal":{"name":"International journal of applied earth observation and geoinformation : ITC journal","volume":null,"pages":null},"PeriodicalIF":7.6000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1569843224004746/pdfft?md5=02e9cf216f430ff0c5b854b4f5a04680&pid=1-s2.0-S1569843224004746-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Spatiotemporal weighted neural network reveals surface seawater pCO2 distributions and underlying environmental mechanisms in the North Pacific Ocean\",\"authors\":\"\",\"doi\":\"10.1016/j.jag.2024.104120\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The North Pacific Ocean plays a pivotal role as a carbon sink within the global carbon cycle. However, a comprehensive understanding of the spatiotemporal dynamics of carbon dioxide concentration and its determinants in this domain remains elusive due to its vast dimensions and the intricacies of influencing factors, with previous research on carbon dioxide partial pressure in the North Pacific Ocean also being relatively scarce. While prevalent machine learning methodologies have been extensively applied to predict the partial pressure of ocean carbon dioxide (pCO<sub>2</sub>), their limited interpretability has impeded substantial progress in elucidating the underlying mechanisms. This study introduces a gridded spatiotemporal neural network weighted regression (GSTNNWR) model to illuminate temporal and spatial relationships among relevant environmental variables and pCO<sub>2</sub>. The GSTNNWR model achieves high-precision and high-resolution forecasts of surface pCO<sub>2</sub> in the North Pacific Ocean, demonstrating commendable performance (R<sup>2</sup> = 0.863 and RMSE=15.123 µatm). Simultaneously, we obtain a quantitative characterization of how various environmental factors influence pCO2 across different temporal and spatial scales. Results show a dominant positive effect of temperature on the pCO2, with an averaged normalized coefficient of 0.28, and variability in the effects of chlorophyll and salinity on the pCO<sub>2</sub> at different spatial and temporal locations and temperatures, whose average normalized coefficients are −0.10 and −0.04.The findings of our study will provide insights into the mechanisms and interactions within the North Pacific carbon cycle, contributing to a better understanding of ocean carbon sink formation and the dynamic regulation of the North Pacific carbon cycle.</p></div>\",\"PeriodicalId\":73423,\"journal\":{\"name\":\"International journal of applied earth observation and geoinformation : ITC journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1569843224004746/pdfft?md5=02e9cf216f430ff0c5b854b4f5a04680&pid=1-s2.0-S1569843224004746-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of applied earth observation and geoinformation : ITC journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1569843224004746\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"REMOTE SENSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of applied earth observation and geoinformation : ITC journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569843224004746","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"REMOTE SENSING","Score":null,"Total":0}
Spatiotemporal weighted neural network reveals surface seawater pCO2 distributions and underlying environmental mechanisms in the North Pacific Ocean
The North Pacific Ocean plays a pivotal role as a carbon sink within the global carbon cycle. However, a comprehensive understanding of the spatiotemporal dynamics of carbon dioxide concentration and its determinants in this domain remains elusive due to its vast dimensions and the intricacies of influencing factors, with previous research on carbon dioxide partial pressure in the North Pacific Ocean also being relatively scarce. While prevalent machine learning methodologies have been extensively applied to predict the partial pressure of ocean carbon dioxide (pCO2), their limited interpretability has impeded substantial progress in elucidating the underlying mechanisms. This study introduces a gridded spatiotemporal neural network weighted regression (GSTNNWR) model to illuminate temporal and spatial relationships among relevant environmental variables and pCO2. The GSTNNWR model achieves high-precision and high-resolution forecasts of surface pCO2 in the North Pacific Ocean, demonstrating commendable performance (R2 = 0.863 and RMSE=15.123 µatm). Simultaneously, we obtain a quantitative characterization of how various environmental factors influence pCO2 across different temporal and spatial scales. Results show a dominant positive effect of temperature on the pCO2, with an averaged normalized coefficient of 0.28, and variability in the effects of chlorophyll and salinity on the pCO2 at different spatial and temporal locations and temperatures, whose average normalized coefficients are −0.10 and −0.04.The findings of our study will provide insights into the mechanisms and interactions within the North Pacific carbon cycle, contributing to a better understanding of ocean carbon sink formation and the dynamic regulation of the North Pacific carbon cycle.
期刊介绍:
The International Journal of Applied Earth Observation and Geoinformation publishes original papers that utilize earth observation data for natural resource and environmental inventory and management. These data primarily originate from remote sensing platforms, including satellites and aircraft, supplemented by surface and subsurface measurements. Addressing natural resources such as forests, agricultural land, soils, and water, as well as environmental concerns like biodiversity, land degradation, and hazards, the journal explores conceptual and data-driven approaches. It covers geoinformation themes like capturing, databasing, visualization, interpretation, data quality, and spatial uncertainty.