由不同毛细管组成的土壤-结构界面渗透系数分析模型

IF 4.9 2区 工程技术 Q1 ENGINEERING, CIVIL
{"title":"由不同毛细管组成的土壤-结构界面渗透系数分析模型","authors":"","doi":"10.1016/j.trgeo.2024.101352","DOIUrl":null,"url":null,"abstract":"<div><p>The soil-structure interface, representing the contact surface between soil and structures such as buildings or rocks, assumes critical importance in water-related projects like earth dams, cut-off walls, side slopes, foundation pits, and water tunnels. Monitoring reports and studies consistently identify this interface as a vulnerable zone susceptible to seepage-related accidents. Despite this recognition, research on the topic has been limited, with a predominant focus on experimental methods that tend to underestimate permeability. This paper presents an analytical model, grounded in capillary theory, for calculating the permeability coefficient of the soil-structure interface. The study explores the differences in permeability between the interfacial soil and far-field soil. The study concludes that the higher porosity of the interfacial soil (porosity ≥ 0.48) compared to the far-field soil (porosity: 0.26–0.48) is a key factor in rendering the soil-structure interface susceptible to seepage. The calculated permeability coefficient of the interface, in relation to experimental values, exhibits a consistent ratio of 2.5–2.6 when the soil porosity is below 0.43, indicating reliable predictive utility. Moreover, the permeability coefficient of the interfacial soil proves to be at least 4.05–6.67 times larger than that of the far-field soil, potentially leading to the creation of preferential seepage channels at the interface.</p></div>","PeriodicalId":56013,"journal":{"name":"Transportation Geotechnics","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An analytical model for permeability coefficient of soil-structure interface composed of different capillaries\",\"authors\":\"\",\"doi\":\"10.1016/j.trgeo.2024.101352\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The soil-structure interface, representing the contact surface between soil and structures such as buildings or rocks, assumes critical importance in water-related projects like earth dams, cut-off walls, side slopes, foundation pits, and water tunnels. Monitoring reports and studies consistently identify this interface as a vulnerable zone susceptible to seepage-related accidents. Despite this recognition, research on the topic has been limited, with a predominant focus on experimental methods that tend to underestimate permeability. This paper presents an analytical model, grounded in capillary theory, for calculating the permeability coefficient of the soil-structure interface. The study explores the differences in permeability between the interfacial soil and far-field soil. The study concludes that the higher porosity of the interfacial soil (porosity ≥ 0.48) compared to the far-field soil (porosity: 0.26–0.48) is a key factor in rendering the soil-structure interface susceptible to seepage. The calculated permeability coefficient of the interface, in relation to experimental values, exhibits a consistent ratio of 2.5–2.6 when the soil porosity is below 0.43, indicating reliable predictive utility. Moreover, the permeability coefficient of the interfacial soil proves to be at least 4.05–6.67 times larger than that of the far-field soil, potentially leading to the creation of preferential seepage channels at the interface.</p></div>\",\"PeriodicalId\":56013,\"journal\":{\"name\":\"Transportation Geotechnics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transportation Geotechnics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214391224001739\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Geotechnics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214391224001739","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

土壤-结构界面是土壤与建筑物或岩石等结构之间的接触面,在土坝、截水墙、边坡、基坑和输水隧道等与水有关的工程中至关重要。监测报告和研究一致认为,该界面是容易发生渗漏事故的脆弱区域。尽管认识到了这一点,但对这一问题的研究却很有限,主要集中在实验方法上,而这些方法往往会低估渗透性。本文提出了一个以毛细管理论为基础的分析模型,用于计算土壤-结构界面的渗透系数。研究探讨了界面土壤与远场土壤在渗透性方面的差异。研究得出结论,与远场土壤(孔隙度:0.26-0.48)相比,界面土壤的孔隙度更高(孔隙度≥ 0.48),这是导致土壤-结构界面容易渗水的关键因素。当土壤孔隙度低于 0.43 时,计算得出的界面渗透系数与实验值的比值一致,为 2.5-2.6,这表明该方法具有可靠的预测作用。此外,事实证明界面土壤的渗透系数至少是远场土壤的 4.05-6.67 倍,有可能导致在界面上形成优先渗流通道。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An analytical model for permeability coefficient of soil-structure interface composed of different capillaries

The soil-structure interface, representing the contact surface between soil and structures such as buildings or rocks, assumes critical importance in water-related projects like earth dams, cut-off walls, side slopes, foundation pits, and water tunnels. Monitoring reports and studies consistently identify this interface as a vulnerable zone susceptible to seepage-related accidents. Despite this recognition, research on the topic has been limited, with a predominant focus on experimental methods that tend to underestimate permeability. This paper presents an analytical model, grounded in capillary theory, for calculating the permeability coefficient of the soil-structure interface. The study explores the differences in permeability between the interfacial soil and far-field soil. The study concludes that the higher porosity of the interfacial soil (porosity ≥ 0.48) compared to the far-field soil (porosity: 0.26–0.48) is a key factor in rendering the soil-structure interface susceptible to seepage. The calculated permeability coefficient of the interface, in relation to experimental values, exhibits a consistent ratio of 2.5–2.6 when the soil porosity is below 0.43, indicating reliable predictive utility. Moreover, the permeability coefficient of the interfacial soil proves to be at least 4.05–6.67 times larger than that of the far-field soil, potentially leading to the creation of preferential seepage channels at the interface.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Transportation Geotechnics
Transportation Geotechnics Social Sciences-Transportation
CiteScore
8.10
自引率
11.30%
发文量
194
审稿时长
51 days
期刊介绍: Transportation Geotechnics is a journal dedicated to publishing high-quality, theoretical, and applied papers that cover all facets of geotechnics for transportation infrastructure such as roads, highways, railways, underground railways, airfields, and waterways. The journal places a special emphasis on case studies that present original work relevant to the sustainable construction of transportation infrastructure. The scope of topics it addresses includes the geotechnical properties of geomaterials for sustainable and rational design and construction, the behavior of compacted and stabilized geomaterials, the use of geosynthetics and reinforcement in constructed layers and interlayers, ground improvement and slope stability for transportation infrastructures, compaction technology and management, maintenance technology, the impact of climate, embankments for highways and high-speed trains, transition zones, dredging, underwater geotechnics for infrastructure purposes, and the modeling of multi-layered structures and supporting ground under dynamic and repeated loads.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信