伴侣介导的自噬对 PLCG1 的降解功能受损会促进细胞衰老和椎间盘退化。

Zhangrong Cheng, Weikang Gan, Qian Xiang, Kangcheng Zhao, Haiyang Gao, Yuhang Chen, Pengzhi Shi, Anran Zhang, Gaocai Li, Yu Song, Xiaobo Feng, Cao Yang, Yukun Zhang
{"title":"伴侣介导的自噬对 PLCG1 的降解功能受损会促进细胞衰老和椎间盘退化。","authors":"Zhangrong Cheng, Weikang Gan, Qian Xiang, Kangcheng Zhao, Haiyang Gao, Yuhang Chen, Pengzhi Shi, Anran Zhang, Gaocai Li, Yu Song, Xiaobo Feng, Cao Yang, Yukun Zhang","doi":"10.1080/15548627.2024.2395797","DOIUrl":null,"url":null,"abstract":"<p><p>Defects in chaperone-mediated autophagy (CMA) are associated with cellular senescence, but the mechanism remains poorly understood. Here, we found that CMA inhibition induced cellular senescence in a calcium-dependent manner and identified its role in TNF-induced senescence of nucleus pulposus cells (NPC) and intervertebral disc degeneration. Based on structural and functional proteomic screens, PLCG1 (phospholipase C gamma 1) was predicted as a potential substrate for CMA deficiency to affect calcium homeostasis. We further confirmed that PLCG1 was a key mediator of CMA in the regulation of intracellular calcium flux. Aberrant accumulation of PLCG1 caused by CMA blockage resulted in calcium overload, thereby inducing NPC senescence. Immunoassays on human specimens showed that reduced LAMP2A, the rate-limiting protein of CMA, or increased PLCG1 was associated with disc senescence, and the TNF-induced disc degeneration in rats was inhibited by overexpression of <i>Lamp2a</i> or knockdown of <i>Plcg1</i>. Because CMA dysregulation, calcium overload, and cellular senescence are common features of disc degeneration and other age-related degenerative diseases, the discovery of actionable molecular targets that can link these perturbations may have therapeutic value.<b>Abbreviation:</b> ATRA: all-trans-retinoic acid; BrdU: bromodeoxyuridine; CDKN1A/p21: cyclin dependent kinase inhibitor 1A; CDKN2A/p16-INK4A: cyclin dependent kinase inhibitor 2A; CMA: chaperone-mediated autophagy; DHI: disc height index; ER: endoplasmic reticulum; IP: immunoprecipitation; IP3: inositol 1,4,5-trisphosphate; ITPR/IP3R: inositol 1,4,5-trisphosphate receptor; IVD: intervertebral disc; IVDD: intervertebral disc degeneration; KD: knockdown; KO: knockout; Leu: leupeptin; MRI: magnetic resonance imaging; MS: mass spectrometry; N/L: NH<sub>4</sub>Cl and leupeptin; NP: nucleus pulposus; NPC: nucleus pulposus cells; PI: protease inhibitors; PLC: phospholipase C; PLCG1: phospholipase C gamma 1; ROS: reactive oxygen species; RT-qPCR: real-time quantitative reverse transcription PCR; SA-GLB1/β-gal: senescence-associated galactosidase beta 1; SASP: senescence-associated secretory phenotype; STV: starvation; TMT: tandem mass tag; TNF: tumor necrosis factor; TP53: tumor protein p53; UPS: ubiquitin-proteasome system.</p>","PeriodicalId":93893,"journal":{"name":"Autophagy","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impaired degradation of PLCG1 by chaperone-mediated autophagy promotes cellular senescence and intervertebral disc degeneration.\",\"authors\":\"Zhangrong Cheng, Weikang Gan, Qian Xiang, Kangcheng Zhao, Haiyang Gao, Yuhang Chen, Pengzhi Shi, Anran Zhang, Gaocai Li, Yu Song, Xiaobo Feng, Cao Yang, Yukun Zhang\",\"doi\":\"10.1080/15548627.2024.2395797\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Defects in chaperone-mediated autophagy (CMA) are associated with cellular senescence, but the mechanism remains poorly understood. Here, we found that CMA inhibition induced cellular senescence in a calcium-dependent manner and identified its role in TNF-induced senescence of nucleus pulposus cells (NPC) and intervertebral disc degeneration. Based on structural and functional proteomic screens, PLCG1 (phospholipase C gamma 1) was predicted as a potential substrate for CMA deficiency to affect calcium homeostasis. We further confirmed that PLCG1 was a key mediator of CMA in the regulation of intracellular calcium flux. Aberrant accumulation of PLCG1 caused by CMA blockage resulted in calcium overload, thereby inducing NPC senescence. Immunoassays on human specimens showed that reduced LAMP2A, the rate-limiting protein of CMA, or increased PLCG1 was associated with disc senescence, and the TNF-induced disc degeneration in rats was inhibited by overexpression of <i>Lamp2a</i> or knockdown of <i>Plcg1</i>. Because CMA dysregulation, calcium overload, and cellular senescence are common features of disc degeneration and other age-related degenerative diseases, the discovery of actionable molecular targets that can link these perturbations may have therapeutic value.<b>Abbreviation:</b> ATRA: all-trans-retinoic acid; BrdU: bromodeoxyuridine; CDKN1A/p21: cyclin dependent kinase inhibitor 1A; CDKN2A/p16-INK4A: cyclin dependent kinase inhibitor 2A; CMA: chaperone-mediated autophagy; DHI: disc height index; ER: endoplasmic reticulum; IP: immunoprecipitation; IP3: inositol 1,4,5-trisphosphate; ITPR/IP3R: inositol 1,4,5-trisphosphate receptor; IVD: intervertebral disc; IVDD: intervertebral disc degeneration; KD: knockdown; KO: knockout; Leu: leupeptin; MRI: magnetic resonance imaging; MS: mass spectrometry; N/L: NH<sub>4</sub>Cl and leupeptin; NP: nucleus pulposus; NPC: nucleus pulposus cells; PI: protease inhibitors; PLC: phospholipase C; PLCG1: phospholipase C gamma 1; ROS: reactive oxygen species; RT-qPCR: real-time quantitative reverse transcription PCR; SA-GLB1/β-gal: senescence-associated galactosidase beta 1; SASP: senescence-associated secretory phenotype; STV: starvation; TMT: tandem mass tag; TNF: tumor necrosis factor; TP53: tumor protein p53; UPS: ubiquitin-proteasome system.</p>\",\"PeriodicalId\":93893,\"journal\":{\"name\":\"Autophagy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Autophagy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/15548627.2024.2395797\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Autophagy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15548627.2024.2395797","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

伴侣介导的自噬(CMA)缺陷与细胞衰老有关,但对其机制仍知之甚少。在这里,我们发现 CMA 抑制以钙依赖的方式诱导细胞衰老,并确定了它在 TNF 诱导的髓核细胞(NPC)衰老和椎间盘变性中的作用。基于结构和功能蛋白质组学筛选,PLCG1(磷脂酶 C γ 1)被预测为 CMA 缺乏影响钙稳态的潜在底物。我们进一步证实,PLCG1 是 CMA 调节细胞内钙通量的关键介质。CMA阻断引起的PLCG1异常积累导致钙超载,从而诱导鼻咽癌衰老。对人体标本进行的免疫测定显示,CMA 的限速蛋白 LAMP2A 的减少或 PLCG1 的增加与椎间盘衰老有关,过表达 Lamp2a 或敲除 Plcg1 可抑制 TNF 诱导的大鼠椎间盘退化。由于CMA失调、钙超载和细胞衰老是椎间盘退变和其他与年龄相关的退行性疾病的共同特征,因此发现能将这些干扰联系起来的可操作分子靶点可能具有治疗价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Impaired degradation of PLCG1 by chaperone-mediated autophagy promotes cellular senescence and intervertebral disc degeneration.

Defects in chaperone-mediated autophagy (CMA) are associated with cellular senescence, but the mechanism remains poorly understood. Here, we found that CMA inhibition induced cellular senescence in a calcium-dependent manner and identified its role in TNF-induced senescence of nucleus pulposus cells (NPC) and intervertebral disc degeneration. Based on structural and functional proteomic screens, PLCG1 (phospholipase C gamma 1) was predicted as a potential substrate for CMA deficiency to affect calcium homeostasis. We further confirmed that PLCG1 was a key mediator of CMA in the regulation of intracellular calcium flux. Aberrant accumulation of PLCG1 caused by CMA blockage resulted in calcium overload, thereby inducing NPC senescence. Immunoassays on human specimens showed that reduced LAMP2A, the rate-limiting protein of CMA, or increased PLCG1 was associated with disc senescence, and the TNF-induced disc degeneration in rats was inhibited by overexpression of Lamp2a or knockdown of Plcg1. Because CMA dysregulation, calcium overload, and cellular senescence are common features of disc degeneration and other age-related degenerative diseases, the discovery of actionable molecular targets that can link these perturbations may have therapeutic value.Abbreviation: ATRA: all-trans-retinoic acid; BrdU: bromodeoxyuridine; CDKN1A/p21: cyclin dependent kinase inhibitor 1A; CDKN2A/p16-INK4A: cyclin dependent kinase inhibitor 2A; CMA: chaperone-mediated autophagy; DHI: disc height index; ER: endoplasmic reticulum; IP: immunoprecipitation; IP3: inositol 1,4,5-trisphosphate; ITPR/IP3R: inositol 1,4,5-trisphosphate receptor; IVD: intervertebral disc; IVDD: intervertebral disc degeneration; KD: knockdown; KO: knockout; Leu: leupeptin; MRI: magnetic resonance imaging; MS: mass spectrometry; N/L: NH4Cl and leupeptin; NP: nucleus pulposus; NPC: nucleus pulposus cells; PI: protease inhibitors; PLC: phospholipase C; PLCG1: phospholipase C gamma 1; ROS: reactive oxygen species; RT-qPCR: real-time quantitative reverse transcription PCR; SA-GLB1/β-gal: senescence-associated galactosidase beta 1; SASP: senescence-associated secretory phenotype; STV: starvation; TMT: tandem mass tag; TNF: tumor necrosis factor; TP53: tumor protein p53; UPS: ubiquitin-proteasome system.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信