Arnold Kamis, Nidhi Gadia, Zilin Luo, Shu Xin Ng, Mansi Thumbar
{"title":"获得预测慢性阻塞性肺病的最准确、最可解释的模型:多重线性回归和机器学习方法的三角分析。","authors":"Arnold Kamis, Nidhi Gadia, Zilin Luo, Shu Xin Ng, Mansi Thumbar","doi":"10.2196/58455","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Lung disease is a severe problem in the United States. Despite the decreasing rates of cigarette smoking, chronic obstructive pulmonary disease (COPD) continues to be a health burden in the United States. In this paper, we focus on COPD in the United States from 2016 to 2019.</p><p><strong>Objective: </strong>We gathered a diverse set of non-personally identifiable information from public data sources to better understand and predict COPD rates at the core-based statistical area (CBSA) level in the United States. Our objective was to compare linear models with machine learning models to obtain the most accurate and interpretable model of COPD.</p><p><strong>Methods: </strong>We integrated non-personally identifiable information from multiple Centers for Disease Control and Prevention sources and used them to analyze COPD with different types of methods. We included cigarette smoking, a well-known contributing factor, and race/ethnicity because health disparities among different races and ethnicities in the United States are also well known. The models also included the air quality index, education, employment, and economic variables. We fitted models with both multiple linear regression and machine learning methods.</p><p><strong>Results: </strong>The most accurate multiple linear regression model has variance explained of 81.1%, mean absolute error of 0.591, and symmetric mean absolute percentage error of 9.666. The most accurate machine learning model has variance explained of 85.7%, mean absolute error of 0.456, and symmetric mean absolute percentage error of 6.956. Overall, cigarette smoking and household income are the strongest predictor variables. Moderately strong predictors include education level and unemployment level, as well as American Indian or Alaska Native, Black, and Hispanic population percentages, all measured at the CBSA level.</p><p><strong>Conclusions: </strong>This research highlights the importance of using diverse data sources as well as multiple methods to understand and predict COPD. The most accurate model was a gradient boosted tree, which captured nonlinearities in a model whose accuracy is superior to the best multiple linear regression. Our interpretable models suggest ways that individual predictor variables can be used in tailored interventions aimed at decreasing COPD rates in specific demographic and ethnographic communities. Gaps in understanding the health impacts of poor air quality, particularly in relation to climate change, suggest a need for further research to design interventions and improve public health.</p>","PeriodicalId":73551,"journal":{"name":"JMIR AI","volume":"3 ","pages":"e58455"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11393512/pdf/","citationCount":"0","resultStr":"{\"title\":\"Obtaining the Most Accurate, Explainable Model for Predicting Chronic Obstructive Pulmonary Disease: Triangulation of Multiple Linear Regression and Machine Learning Methods.\",\"authors\":\"Arnold Kamis, Nidhi Gadia, Zilin Luo, Shu Xin Ng, Mansi Thumbar\",\"doi\":\"10.2196/58455\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Lung disease is a severe problem in the United States. Despite the decreasing rates of cigarette smoking, chronic obstructive pulmonary disease (COPD) continues to be a health burden in the United States. In this paper, we focus on COPD in the United States from 2016 to 2019.</p><p><strong>Objective: </strong>We gathered a diverse set of non-personally identifiable information from public data sources to better understand and predict COPD rates at the core-based statistical area (CBSA) level in the United States. Our objective was to compare linear models with machine learning models to obtain the most accurate and interpretable model of COPD.</p><p><strong>Methods: </strong>We integrated non-personally identifiable information from multiple Centers for Disease Control and Prevention sources and used them to analyze COPD with different types of methods. We included cigarette smoking, a well-known contributing factor, and race/ethnicity because health disparities among different races and ethnicities in the United States are also well known. The models also included the air quality index, education, employment, and economic variables. We fitted models with both multiple linear regression and machine learning methods.</p><p><strong>Results: </strong>The most accurate multiple linear regression model has variance explained of 81.1%, mean absolute error of 0.591, and symmetric mean absolute percentage error of 9.666. The most accurate machine learning model has variance explained of 85.7%, mean absolute error of 0.456, and symmetric mean absolute percentage error of 6.956. Overall, cigarette smoking and household income are the strongest predictor variables. Moderately strong predictors include education level and unemployment level, as well as American Indian or Alaska Native, Black, and Hispanic population percentages, all measured at the CBSA level.</p><p><strong>Conclusions: </strong>This research highlights the importance of using diverse data sources as well as multiple methods to understand and predict COPD. The most accurate model was a gradient boosted tree, which captured nonlinearities in a model whose accuracy is superior to the best multiple linear regression. Our interpretable models suggest ways that individual predictor variables can be used in tailored interventions aimed at decreasing COPD rates in specific demographic and ethnographic communities. Gaps in understanding the health impacts of poor air quality, particularly in relation to climate change, suggest a need for further research to design interventions and improve public health.</p>\",\"PeriodicalId\":73551,\"journal\":{\"name\":\"JMIR AI\",\"volume\":\"3 \",\"pages\":\"e58455\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11393512/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JMIR AI\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2196/58455\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMIR AI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2196/58455","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Obtaining the Most Accurate, Explainable Model for Predicting Chronic Obstructive Pulmonary Disease: Triangulation of Multiple Linear Regression and Machine Learning Methods.
Background: Lung disease is a severe problem in the United States. Despite the decreasing rates of cigarette smoking, chronic obstructive pulmonary disease (COPD) continues to be a health burden in the United States. In this paper, we focus on COPD in the United States from 2016 to 2019.
Objective: We gathered a diverse set of non-personally identifiable information from public data sources to better understand and predict COPD rates at the core-based statistical area (CBSA) level in the United States. Our objective was to compare linear models with machine learning models to obtain the most accurate and interpretable model of COPD.
Methods: We integrated non-personally identifiable information from multiple Centers for Disease Control and Prevention sources and used them to analyze COPD with different types of methods. We included cigarette smoking, a well-known contributing factor, and race/ethnicity because health disparities among different races and ethnicities in the United States are also well known. The models also included the air quality index, education, employment, and economic variables. We fitted models with both multiple linear regression and machine learning methods.
Results: The most accurate multiple linear regression model has variance explained of 81.1%, mean absolute error of 0.591, and symmetric mean absolute percentage error of 9.666. The most accurate machine learning model has variance explained of 85.7%, mean absolute error of 0.456, and symmetric mean absolute percentage error of 6.956. Overall, cigarette smoking and household income are the strongest predictor variables. Moderately strong predictors include education level and unemployment level, as well as American Indian or Alaska Native, Black, and Hispanic population percentages, all measured at the CBSA level.
Conclusions: This research highlights the importance of using diverse data sources as well as multiple methods to understand and predict COPD. The most accurate model was a gradient boosted tree, which captured nonlinearities in a model whose accuracy is superior to the best multiple linear regression. Our interpretable models suggest ways that individual predictor variables can be used in tailored interventions aimed at decreasing COPD rates in specific demographic and ethnographic communities. Gaps in understanding the health impacts of poor air quality, particularly in relation to climate change, suggest a need for further research to design interventions and improve public health.