{"title":"术前 T2 加权脂肪抑制磁共振成像信号强度的增加与肩袖撕裂的晚期组织变性和线粒体功能障碍有关。","authors":"Masaya Kusunose, Yutaka Mifune, Atsuyuki Inui, Kohei Yamaura, Takahiro Furukawa, Tatsuo Kato, Ryosuke Kuroda","doi":"10.1016/j.arthro.2024.08.019","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To investigate the relationship between magnetic resonance imaging (MRI) signal intensities and mitochondrial function in patients undergoing arthroscopic rotator cuff repair, assessed through histological and genetic profiling of tendon tissue.</p><p><strong>Methods: </strong>This study, conducted between April 2022 and January 2023, included 20 patients undergoing rotator cuff repair for atraumatic/degenerative tears. Rotator cuff tendon edge samples were obtained during arthroscopic rotator cuff repair. Patients were classified based on signal intensity from preoperative T2-weighted fat suppressed MRI. Specifically, they were categorized as having either high or low signal intensity at the rotator cuff tendon edge, with the deltoid muscle serving as a reference. Comparative analyses specifically compared the histological features and genetic profiles of the tendon tissue at the rotator cuff tendon edge. Histological evaluation of harvested tendon specimens during arthroscopic rotator cuff repair employed the modified Bonar score. Real-time polymerase chain reaction was used to assess expression of various mitochondrial and apoptosis-related genes. The mitochondrial morphology of the rotator cuff torn site was examined using electron microscopy.</p><p><strong>Results: </strong>The higher signal intensity group showed significantly higher modified Bonar scores (P = .0068), decreased mitochondrial gene expression, increased TdT-mediated dUTP-biotin nick end labeling-positive cells (P = .032), lower superoxide dismutase activity (P = .011), reduced ATP5A (P = .031), and increased cleaved caspase-9 activity (P = .026) compared with the lower signal intensity group. Electron microscopy revealed fewer mitochondrial cristae in the higher signal intensity group.</p><p><strong>Conclusions: </strong>Our results suggest correlations between high MRI signal intensities and the presence of degeneration, mitochondrial dysfunction, and increased apoptosis in rotator cuff tissues. This underscores the utility of MRI signal intensity as an indicator of tissue condition. CLINICAL RELEVANCE: This work builds on the premise that elevated preoperative MRI signal intensities may indicate higher rates of postoperative rotator cuff re-tears, substantiating these findings from a mitochondrial function perspective.</p>","PeriodicalId":55459,"journal":{"name":"Arthroscopy-The Journal of Arthroscopic and Related Surgery","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preoperative Increases in T2-Weighted Fat-Suppressed Magnetic Resonance Imaging Signal Intensities Associated With Advanced Tissue Degeneration and Mitochondrial Dysfunction in Rotator Cuff Tears.\",\"authors\":\"Masaya Kusunose, Yutaka Mifune, Atsuyuki Inui, Kohei Yamaura, Takahiro Furukawa, Tatsuo Kato, Ryosuke Kuroda\",\"doi\":\"10.1016/j.arthro.2024.08.019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>To investigate the relationship between magnetic resonance imaging (MRI) signal intensities and mitochondrial function in patients undergoing arthroscopic rotator cuff repair, assessed through histological and genetic profiling of tendon tissue.</p><p><strong>Methods: </strong>This study, conducted between April 2022 and January 2023, included 20 patients undergoing rotator cuff repair for atraumatic/degenerative tears. Rotator cuff tendon edge samples were obtained during arthroscopic rotator cuff repair. Patients were classified based on signal intensity from preoperative T2-weighted fat suppressed MRI. Specifically, they were categorized as having either high or low signal intensity at the rotator cuff tendon edge, with the deltoid muscle serving as a reference. Comparative analyses specifically compared the histological features and genetic profiles of the tendon tissue at the rotator cuff tendon edge. Histological evaluation of harvested tendon specimens during arthroscopic rotator cuff repair employed the modified Bonar score. Real-time polymerase chain reaction was used to assess expression of various mitochondrial and apoptosis-related genes. The mitochondrial morphology of the rotator cuff torn site was examined using electron microscopy.</p><p><strong>Results: </strong>The higher signal intensity group showed significantly higher modified Bonar scores (P = .0068), decreased mitochondrial gene expression, increased TdT-mediated dUTP-biotin nick end labeling-positive cells (P = .032), lower superoxide dismutase activity (P = .011), reduced ATP5A (P = .031), and increased cleaved caspase-9 activity (P = .026) compared with the lower signal intensity group. Electron microscopy revealed fewer mitochondrial cristae in the higher signal intensity group.</p><p><strong>Conclusions: </strong>Our results suggest correlations between high MRI signal intensities and the presence of degeneration, mitochondrial dysfunction, and increased apoptosis in rotator cuff tissues. This underscores the utility of MRI signal intensity as an indicator of tissue condition. CLINICAL RELEVANCE: This work builds on the premise that elevated preoperative MRI signal intensities may indicate higher rates of postoperative rotator cuff re-tears, substantiating these findings from a mitochondrial function perspective.</p>\",\"PeriodicalId\":55459,\"journal\":{\"name\":\"Arthroscopy-The Journal of Arthroscopic and Related Surgery\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Arthroscopy-The Journal of Arthroscopic and Related Surgery\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.arthro.2024.08.019\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ORTHOPEDICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arthroscopy-The Journal of Arthroscopic and Related Surgery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.arthro.2024.08.019","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ORTHOPEDICS","Score":null,"Total":0}
Preoperative Increases in T2-Weighted Fat-Suppressed Magnetic Resonance Imaging Signal Intensities Associated With Advanced Tissue Degeneration and Mitochondrial Dysfunction in Rotator Cuff Tears.
Purpose: To investigate the relationship between magnetic resonance imaging (MRI) signal intensities and mitochondrial function in patients undergoing arthroscopic rotator cuff repair, assessed through histological and genetic profiling of tendon tissue.
Methods: This study, conducted between April 2022 and January 2023, included 20 patients undergoing rotator cuff repair for atraumatic/degenerative tears. Rotator cuff tendon edge samples were obtained during arthroscopic rotator cuff repair. Patients were classified based on signal intensity from preoperative T2-weighted fat suppressed MRI. Specifically, they were categorized as having either high or low signal intensity at the rotator cuff tendon edge, with the deltoid muscle serving as a reference. Comparative analyses specifically compared the histological features and genetic profiles of the tendon tissue at the rotator cuff tendon edge. Histological evaluation of harvested tendon specimens during arthroscopic rotator cuff repair employed the modified Bonar score. Real-time polymerase chain reaction was used to assess expression of various mitochondrial and apoptosis-related genes. The mitochondrial morphology of the rotator cuff torn site was examined using electron microscopy.
Results: The higher signal intensity group showed significantly higher modified Bonar scores (P = .0068), decreased mitochondrial gene expression, increased TdT-mediated dUTP-biotin nick end labeling-positive cells (P = .032), lower superoxide dismutase activity (P = .011), reduced ATP5A (P = .031), and increased cleaved caspase-9 activity (P = .026) compared with the lower signal intensity group. Electron microscopy revealed fewer mitochondrial cristae in the higher signal intensity group.
Conclusions: Our results suggest correlations between high MRI signal intensities and the presence of degeneration, mitochondrial dysfunction, and increased apoptosis in rotator cuff tissues. This underscores the utility of MRI signal intensity as an indicator of tissue condition. CLINICAL RELEVANCE: This work builds on the premise that elevated preoperative MRI signal intensities may indicate higher rates of postoperative rotator cuff re-tears, substantiating these findings from a mitochondrial function perspective.
期刊介绍:
Nowhere is minimally invasive surgery explained better than in Arthroscopy, the leading peer-reviewed journal in the field. Every issue enables you to put into perspective the usefulness of the various emerging arthroscopic techniques. The advantages and disadvantages of these methods -- along with their applications in various situations -- are discussed in relation to their efficiency, efficacy and cost benefit. As a special incentive, paid subscribers also receive access to the journal expanded website.