{"title":"系统发生组学解决了 Poales 的骨干问题,并确定了杂交和多倍体的信号。","authors":"Huijun Wang , Zhigang Wu , Tao Li , Jindong Zhao","doi":"10.1016/j.ympev.2024.108184","DOIUrl":null,"url":null,"abstract":"<div><p>Poales, as one of the largest orders of angiosperm, holds crucial economic and ecological importance. Nevertheless, achieving a consensus topology has been challenging in previous studies due to limited molecular data and sparse taxon sampling. The uneven distribution of species diversity among families and the factors leading to elevated species richness in certain lineages have also been subjects of ongoing discussion and investigation. In this study, we conducted a comprehensive sampling, including representatives from all 14 families and 85 taxa of Poales, along with five additional outgroups. To reconstruct the phylogeny of Poales, we employed a combination of coalescent and concatenation methods on three nuclear gene sets (1093, 491, 143) and one plastid gene set (53), which were inferenced from genomic data. We also conducted phylogenetic hypothesis analyses to evaluate two major conflicting nodes detected in phylogenetic analyses. As a result, we successfully resolved the backbone of Poales and provided a timeline for its evolutionary history. We recovered the sister relationship between Typhaceae and Bromeliaceae as the earliest diverging families within Poales. The clade consisting of Ecdeiocoleaceae and Joinvilleaceae was recovered as the sister group of Poaceae. Within the xyrid clade, Mayacaceae and Erioaculaceae + Xyridaceae successively diverged along the backbone of Poales. The topology of [Aristidoideae, ((Micrairoideae, Panicoideae), (Arundinoideae, (Chloridoideae, Danthonioideae)))] within the PACMAD clade has received strong support from multiple findings. We also delved into the underlying biological factors that contributed to the conflicting nodes observed in the phylogenetic analysis. Apart from the uncertainty regarding the sister group of Poaceae caused by cytonuclear discordance, frequent hybridization and polyploidy may have contributed to other conflicting nodes. We identified 26 putative whole-genome duplication (WGD) events within Poales. However, apart from the σ-WGD and the ρ-WGD, we did not observe any potential polyploid events that could be directly linked to the species diversification in specific lineages. Furthermore, there was a significant increase in the net diversification rate of Poales following the K-Pg boundary.</p></div>","PeriodicalId":56109,"journal":{"name":"Molecular Phylogenetics and Evolution","volume":"200 ","pages":"Article 108184"},"PeriodicalIF":3.6000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1055790324001763/pdfft?md5=d3663215683c6c8c75044949ae96866d&pid=1-s2.0-S1055790324001763-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Phylogenomics resolves the backbone of Poales and identifies signals of hybridization and polyploidy\",\"authors\":\"Huijun Wang , Zhigang Wu , Tao Li , Jindong Zhao\",\"doi\":\"10.1016/j.ympev.2024.108184\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Poales, as one of the largest orders of angiosperm, holds crucial economic and ecological importance. Nevertheless, achieving a consensus topology has been challenging in previous studies due to limited molecular data and sparse taxon sampling. The uneven distribution of species diversity among families and the factors leading to elevated species richness in certain lineages have also been subjects of ongoing discussion and investigation. In this study, we conducted a comprehensive sampling, including representatives from all 14 families and 85 taxa of Poales, along with five additional outgroups. To reconstruct the phylogeny of Poales, we employed a combination of coalescent and concatenation methods on three nuclear gene sets (1093, 491, 143) and one plastid gene set (53), which were inferenced from genomic data. We also conducted phylogenetic hypothesis analyses to evaluate two major conflicting nodes detected in phylogenetic analyses. As a result, we successfully resolved the backbone of Poales and provided a timeline for its evolutionary history. We recovered the sister relationship between Typhaceae and Bromeliaceae as the earliest diverging families within Poales. The clade consisting of Ecdeiocoleaceae and Joinvilleaceae was recovered as the sister group of Poaceae. Within the xyrid clade, Mayacaceae and Erioaculaceae + Xyridaceae successively diverged along the backbone of Poales. The topology of [Aristidoideae, ((Micrairoideae, Panicoideae), (Arundinoideae, (Chloridoideae, Danthonioideae)))] within the PACMAD clade has received strong support from multiple findings. We also delved into the underlying biological factors that contributed to the conflicting nodes observed in the phylogenetic analysis. Apart from the uncertainty regarding the sister group of Poaceae caused by cytonuclear discordance, frequent hybridization and polyploidy may have contributed to other conflicting nodes. We identified 26 putative whole-genome duplication (WGD) events within Poales. However, apart from the σ-WGD and the ρ-WGD, we did not observe any potential polyploid events that could be directly linked to the species diversification in specific lineages. Furthermore, there was a significant increase in the net diversification rate of Poales following the K-Pg boundary.</p></div>\",\"PeriodicalId\":56109,\"journal\":{\"name\":\"Molecular Phylogenetics and Evolution\",\"volume\":\"200 \",\"pages\":\"Article 108184\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1055790324001763/pdfft?md5=d3663215683c6c8c75044949ae96866d&pid=1-s2.0-S1055790324001763-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Phylogenetics and Evolution\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1055790324001763\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Phylogenetics and Evolution","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1055790324001763","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Phylogenomics resolves the backbone of Poales and identifies signals of hybridization and polyploidy
Poales, as one of the largest orders of angiosperm, holds crucial economic and ecological importance. Nevertheless, achieving a consensus topology has been challenging in previous studies due to limited molecular data and sparse taxon sampling. The uneven distribution of species diversity among families and the factors leading to elevated species richness in certain lineages have also been subjects of ongoing discussion and investigation. In this study, we conducted a comprehensive sampling, including representatives from all 14 families and 85 taxa of Poales, along with five additional outgroups. To reconstruct the phylogeny of Poales, we employed a combination of coalescent and concatenation methods on three nuclear gene sets (1093, 491, 143) and one plastid gene set (53), which were inferenced from genomic data. We also conducted phylogenetic hypothesis analyses to evaluate two major conflicting nodes detected in phylogenetic analyses. As a result, we successfully resolved the backbone of Poales and provided a timeline for its evolutionary history. We recovered the sister relationship between Typhaceae and Bromeliaceae as the earliest diverging families within Poales. The clade consisting of Ecdeiocoleaceae and Joinvilleaceae was recovered as the sister group of Poaceae. Within the xyrid clade, Mayacaceae and Erioaculaceae + Xyridaceae successively diverged along the backbone of Poales. The topology of [Aristidoideae, ((Micrairoideae, Panicoideae), (Arundinoideae, (Chloridoideae, Danthonioideae)))] within the PACMAD clade has received strong support from multiple findings. We also delved into the underlying biological factors that contributed to the conflicting nodes observed in the phylogenetic analysis. Apart from the uncertainty regarding the sister group of Poaceae caused by cytonuclear discordance, frequent hybridization and polyploidy may have contributed to other conflicting nodes. We identified 26 putative whole-genome duplication (WGD) events within Poales. However, apart from the σ-WGD and the ρ-WGD, we did not observe any potential polyploid events that could be directly linked to the species diversification in specific lineages. Furthermore, there was a significant increase in the net diversification rate of Poales following the K-Pg boundary.
期刊介绍:
Molecular Phylogenetics and Evolution is dedicated to bringing Darwin''s dream within grasp - to "have fairly true genealogical trees of each great kingdom of Nature." The journal provides a forum for molecular studies that advance our understanding of phylogeny and evolution, further the development of phylogenetically more accurate taxonomic classifications, and ultimately bring a unified classification for all the ramifying lines of life. Phylogeographic studies will be considered for publication if they offer EXCEPTIONAL theoretical or empirical advances.