{"title":"当反应差异取决于治疗方法时,个性化医疗临床试验的最佳设计。","authors":"Belmiro P M Duarte, Anthony C Atkinson","doi":"10.1080/10543406.2024.2395548","DOIUrl":null,"url":null,"abstract":"<p><p>We study optimal designs for clinical trials when the value of the response and its variance depend on treatment and covariates are included in the response model. Such designs are generalizations of Neyman allocation, commonly used in personalized medicine when external factors may have differing effects on the response depending on subgroups of patients. We develop theoretical results for D-, A-, E- and D<math><msub><mi> </mi><mrow><mrow><mi>A</mi></mrow></mrow></msub></math>-optimal designs and construct semidefinite programming (SDP) formulations that support their numerical computation. D-, A-, and E-optimal designs are appropriate for efficient estimation of distinct properties of the parameters of the response models. Our formulation allows finding optimal allocation schemes for a general number of treatments and of covariates. Finally, we study frequentist sequential clinical trial allocation within contexts where response parameters and their respective variances remain unknown. We illustrate, with a simulated example and with a redesigned clinical trial on the treatment of neuro-degenerative disease, that both theoretical and SDP results, derived under the assumption of known variances, converge asymptotically to allocations obtained through the sequential scheme. Procedures to use static and sequential allocation are proposed.</p>","PeriodicalId":54870,"journal":{"name":"Journal of Biopharmaceutical Statistics","volume":" ","pages":"1-18"},"PeriodicalIF":1.2000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimum designs for clinical trials in personalized medicine when response variance depends on treatment.\",\"authors\":\"Belmiro P M Duarte, Anthony C Atkinson\",\"doi\":\"10.1080/10543406.2024.2395548\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We study optimal designs for clinical trials when the value of the response and its variance depend on treatment and covariates are included in the response model. Such designs are generalizations of Neyman allocation, commonly used in personalized medicine when external factors may have differing effects on the response depending on subgroups of patients. We develop theoretical results for D-, A-, E- and D<math><msub><mi> </mi><mrow><mrow><mi>A</mi></mrow></mrow></msub></math>-optimal designs and construct semidefinite programming (SDP) formulations that support their numerical computation. D-, A-, and E-optimal designs are appropriate for efficient estimation of distinct properties of the parameters of the response models. Our formulation allows finding optimal allocation schemes for a general number of treatments and of covariates. Finally, we study frequentist sequential clinical trial allocation within contexts where response parameters and their respective variances remain unknown. We illustrate, with a simulated example and with a redesigned clinical trial on the treatment of neuro-degenerative disease, that both theoretical and SDP results, derived under the assumption of known variances, converge asymptotically to allocations obtained through the sequential scheme. Procedures to use static and sequential allocation are proposed.</p>\",\"PeriodicalId\":54870,\"journal\":{\"name\":\"Journal of Biopharmaceutical Statistics\",\"volume\":\" \",\"pages\":\"1-18\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biopharmaceutical Statistics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/10543406.2024.2395548\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biopharmaceutical Statistics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10543406.2024.2395548","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
摘要
我们研究了当反应值及其方差取决于治疗方法,且反应模型中包含协变量时临床试验的最佳设计。这种设计是奈曼分配的一般化,常用于外部因素可能因患者亚群的不同而对反应产生不同影响的个性化医疗中。我们提出了 D-、A-、E- 和 D A-最优设计的理论结果,并构建了支持其数值计算的半有限编程(SDP)公式。D-、A- 和 E-最优设计适用于有效估计响应模型参数的不同属性。我们的计算公式允许为一般数量的处理和协变量找到最优分配方案。最后,我们研究了在反应参数及其各自方差未知的情况下的频数主义序贯临床试验分配。我们通过一个模拟例子和一个重新设计的治疗神经退行性疾病的临床试验来说明,在已知方差的假设条件下得出的理论结果和 SDP 结果都会渐进地趋近于通过顺序方案得到的分配结果。提出了使用静态和顺序分配的程序。
Optimum designs for clinical trials in personalized medicine when response variance depends on treatment.
We study optimal designs for clinical trials when the value of the response and its variance depend on treatment and covariates are included in the response model. Such designs are generalizations of Neyman allocation, commonly used in personalized medicine when external factors may have differing effects on the response depending on subgroups of patients. We develop theoretical results for D-, A-, E- and D-optimal designs and construct semidefinite programming (SDP) formulations that support their numerical computation. D-, A-, and E-optimal designs are appropriate for efficient estimation of distinct properties of the parameters of the response models. Our formulation allows finding optimal allocation schemes for a general number of treatments and of covariates. Finally, we study frequentist sequential clinical trial allocation within contexts where response parameters and their respective variances remain unknown. We illustrate, with a simulated example and with a redesigned clinical trial on the treatment of neuro-degenerative disease, that both theoretical and SDP results, derived under the assumption of known variances, converge asymptotically to allocations obtained through the sequential scheme. Procedures to use static and sequential allocation are proposed.
期刊介绍:
The Journal of Biopharmaceutical Statistics, a rapid publication journal, discusses quality applications of statistics in biopharmaceutical research and development. Now publishing six times per year, it includes expositions of statistical methodology with immediate applicability to biopharmaceutical research in the form of full-length and short manuscripts, review articles, selected/invited conference papers, short articles, and letters to the editor. Addressing timely and provocative topics important to the biostatistical profession, the journal covers:
Drug, device, and biological research and development;
Drug screening and drug design;
Assessment of pharmacological activity;
Pharmaceutical formulation and scale-up;
Preclinical safety assessment;
Bioavailability, bioequivalence, and pharmacokinetics;
Phase, I, II, and III clinical development including complex innovative designs;
Premarket approval assessment of clinical safety;
Postmarketing surveillance;
Big data and artificial intelligence and applications.