多物种聚合下物种形成时间的可识别性

IF 1.9 4区 数学 Q2 BIOLOGY
Laura Kubatko , Alexander Leonard , Julia Chifman
{"title":"多物种聚合下物种形成时间的可识别性","authors":"Laura Kubatko ,&nbsp;Alexander Leonard ,&nbsp;Julia Chifman","doi":"10.1016/j.jtbi.2024.111927","DOIUrl":null,"url":null,"abstract":"<div><p>The advent of rapid and inexpensive sequencing technologies has necessitated the development of computationally efficient methods for analyzing sequence data for many genes simultaneously in a phylogenetic framework. The coalescent process is the most commonly used model for linking the underlying genealogies of individual genes with the global species-level phylogeny, but inference under the coalescent model is computationally daunting in the typical inference frameworks (e.g., the likelihood and Bayesian frameworks) due to the dimensionality of the space of both gene trees and species trees. Here we consider estimation of the branch lengths in fixed species trees with three or four taxa, and show that these branch lengths are identifiable. We also show that for three and four taxa simple estimators for the branch lengths can be derived based on observed site pattern frequencies. Properties of these estimators, such as their asymptotic variances and large-sample distributions, are examined, and performance of the estimators is assessed using simulation. Finally, we use these estimators to develop a hypothesis test that can be used to delimit species under the coalescent model for three or four putative taxa.</p></div>","PeriodicalId":54763,"journal":{"name":"Journal of Theoretical Biology","volume":"595 ","pages":"Article 111927"},"PeriodicalIF":1.9000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identifiability of speciation times under the multispecies coalescent\",\"authors\":\"Laura Kubatko ,&nbsp;Alexander Leonard ,&nbsp;Julia Chifman\",\"doi\":\"10.1016/j.jtbi.2024.111927\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The advent of rapid and inexpensive sequencing technologies has necessitated the development of computationally efficient methods for analyzing sequence data for many genes simultaneously in a phylogenetic framework. The coalescent process is the most commonly used model for linking the underlying genealogies of individual genes with the global species-level phylogeny, but inference under the coalescent model is computationally daunting in the typical inference frameworks (e.g., the likelihood and Bayesian frameworks) due to the dimensionality of the space of both gene trees and species trees. Here we consider estimation of the branch lengths in fixed species trees with three or four taxa, and show that these branch lengths are identifiable. We also show that for three and four taxa simple estimators for the branch lengths can be derived based on observed site pattern frequencies. Properties of these estimators, such as their asymptotic variances and large-sample distributions, are examined, and performance of the estimators is assessed using simulation. Finally, we use these estimators to develop a hypothesis test that can be used to delimit species under the coalescent model for three or four putative taxa.</p></div>\",\"PeriodicalId\":54763,\"journal\":{\"name\":\"Journal of Theoretical Biology\",\"volume\":\"595 \",\"pages\":\"Article 111927\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Theoretical Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022519324002121\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Theoretical Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022519324002121","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

随着快速廉价测序技术的出现,有必要开发计算效率高的方法,以便在系统发育框架内同时分析许多基因的序列数据。凝聚过程是将单个基因的底层系谱与全局物种水平的系统发育联系起来的最常用模型,但由于基因树和物种树的空间维度较高,在典型的推断框架(如似然法和贝叶斯框架)中,凝聚模型下的推断计算难度很大。在这里,我们考虑的是在有三个或四个类群的固定物种树中估计分支长度,并证明这些分支长度是可识别的。我们还证明,对于三个和四个类群,可以根据观察到的位点模式频率推导出简单的分支长度估计值。我们考察了这些估计器的特性,如它们的渐近方差和大样本分布,并通过模拟评估了这些估计器的性能。最后,我们利用这些估计值建立了一个假设检验,可用于在凝聚模型下为三或四个假定类群划分物种。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identifiability of speciation times under the multispecies coalescent

The advent of rapid and inexpensive sequencing technologies has necessitated the development of computationally efficient methods for analyzing sequence data for many genes simultaneously in a phylogenetic framework. The coalescent process is the most commonly used model for linking the underlying genealogies of individual genes with the global species-level phylogeny, but inference under the coalescent model is computationally daunting in the typical inference frameworks (e.g., the likelihood and Bayesian frameworks) due to the dimensionality of the space of both gene trees and species trees. Here we consider estimation of the branch lengths in fixed species trees with three or four taxa, and show that these branch lengths are identifiable. We also show that for three and four taxa simple estimators for the branch lengths can be derived based on observed site pattern frequencies. Properties of these estimators, such as their asymptotic variances and large-sample distributions, are examined, and performance of the estimators is assessed using simulation. Finally, we use these estimators to develop a hypothesis test that can be used to delimit species under the coalescent model for three or four putative taxa.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.20
自引率
5.00%
发文量
218
审稿时长
51 days
期刊介绍: The Journal of Theoretical Biology is the leading forum for theoretical perspectives that give insight into biological processes. It covers a very wide range of topics and is of interest to biologists in many areas of research, including: • Brain and Neuroscience • Cancer Growth and Treatment • Cell Biology • Developmental Biology • Ecology • Evolution • Immunology, • Infectious and non-infectious Diseases, • Mathematical, Computational, Biophysical and Statistical Modeling • Microbiology, Molecular Biology, and Biochemistry • Networks and Complex Systems • Physiology • Pharmacodynamics • Animal Behavior and Game Theory Acceptable papers are those that bear significant importance on the biology per se being presented, and not on the mathematical analysis. Papers that include some data or experimental material bearing on theory will be considered, including those that contain comparative study, statistical data analysis, mathematical proof, computer simulations, experiments, field observations, or even philosophical arguments, which are all methods to support or reject theoretical ideas. However, there should be a concerted effort to make papers intelligible to biologists in the chosen field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信