{"title":"大肠杆菌中枢代谢的缺陷可防止无甲状腺死亡,同时仍允许大量蛋白质合成。","authors":"Sharik R Khan, Andrei Kuzminov","doi":"10.1093/genetics/iyae142","DOIUrl":null,"url":null,"abstract":"<p><p>Starvation of Escherichia coli thyA auxotrophs for the required thymine or thymidine leads to the cessation of DNA synthesis and, unexpectedly, to thymineless death (TLD). Previously, TLD-alleviating defects were identified by the candidate gene approach, for their contribution to replication initiation, fork repair, or SOS induction. However, no TLD-blocking mutations were ever found, suggesting a multifactorial nature of TLD. Since (until recently) no unbiased isolation of TLD suppressors was reported, we used enrichment after insertional mutagenesis to systematically isolate TLD suppressors. Our approach was validated by isolation of known TLD-alleviating mutants in recombinational repair. At the same time, and unexpectedly for the current TLD models, most of the isolated suppressors affected general metabolism, while the strongest suppressors impacted the central metabolism. Several temperature-sensitive (Ts) mutants in important/essential functions, like nadA, ribB, or coaA, almost completely suppressed TLD at 42°C. Since blocking protein synthesis completely by chloramphenicol prevents TLD, while reducing protein synthesis to 10% alleviates TLD only slightly, we measured the level of protein synthesis in these mutants at 42°C and found it to be 20-70% of the WT, not enough reduction to explain TLD prevention. We conclude that the isolated central metabolism mutants prevent TLD by affecting specific TLD-promoting functions.</p>","PeriodicalId":48925,"journal":{"name":"Genetics","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11538421/pdf/","citationCount":"0","resultStr":"{\"title\":\"Defects in the central metabolism prevent thymineless death in Escherichia coli, while still allowing significant protein synthesis.\",\"authors\":\"Sharik R Khan, Andrei Kuzminov\",\"doi\":\"10.1093/genetics/iyae142\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Starvation of Escherichia coli thyA auxotrophs for the required thymine or thymidine leads to the cessation of DNA synthesis and, unexpectedly, to thymineless death (TLD). Previously, TLD-alleviating defects were identified by the candidate gene approach, for their contribution to replication initiation, fork repair, or SOS induction. However, no TLD-blocking mutations were ever found, suggesting a multifactorial nature of TLD. Since (until recently) no unbiased isolation of TLD suppressors was reported, we used enrichment after insertional mutagenesis to systematically isolate TLD suppressors. Our approach was validated by isolation of known TLD-alleviating mutants in recombinational repair. At the same time, and unexpectedly for the current TLD models, most of the isolated suppressors affected general metabolism, while the strongest suppressors impacted the central metabolism. Several temperature-sensitive (Ts) mutants in important/essential functions, like nadA, ribB, or coaA, almost completely suppressed TLD at 42°C. Since blocking protein synthesis completely by chloramphenicol prevents TLD, while reducing protein synthesis to 10% alleviates TLD only slightly, we measured the level of protein synthesis in these mutants at 42°C and found it to be 20-70% of the WT, not enough reduction to explain TLD prevention. We conclude that the isolated central metabolism mutants prevent TLD by affecting specific TLD-promoting functions.</p>\",\"PeriodicalId\":48925,\"journal\":{\"name\":\"Genetics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11538421/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/genetics/iyae142\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/genetics/iyae142","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Defects in the central metabolism prevent thymineless death in Escherichia coli, while still allowing significant protein synthesis.
Starvation of Escherichia coli thyA auxotrophs for the required thymine or thymidine leads to the cessation of DNA synthesis and, unexpectedly, to thymineless death (TLD). Previously, TLD-alleviating defects were identified by the candidate gene approach, for their contribution to replication initiation, fork repair, or SOS induction. However, no TLD-blocking mutations were ever found, suggesting a multifactorial nature of TLD. Since (until recently) no unbiased isolation of TLD suppressors was reported, we used enrichment after insertional mutagenesis to systematically isolate TLD suppressors. Our approach was validated by isolation of known TLD-alleviating mutants in recombinational repair. At the same time, and unexpectedly for the current TLD models, most of the isolated suppressors affected general metabolism, while the strongest suppressors impacted the central metabolism. Several temperature-sensitive (Ts) mutants in important/essential functions, like nadA, ribB, or coaA, almost completely suppressed TLD at 42°C. Since blocking protein synthesis completely by chloramphenicol prevents TLD, while reducing protein synthesis to 10% alleviates TLD only slightly, we measured the level of protein synthesis in these mutants at 42°C and found it to be 20-70% of the WT, not enough reduction to explain TLD prevention. We conclude that the isolated central metabolism mutants prevent TLD by affecting specific TLD-promoting functions.
期刊介绍:
GENETICS is published by the Genetics Society of America, a scholarly society that seeks to deepen our understanding of the living world by advancing our understanding of genetics. Since 1916, GENETICS has published high-quality, original research presenting novel findings bearing on genetics and genomics. The journal publishes empirical studies of organisms ranging from microbes to humans, as well as theoretical work.
While it has an illustrious history, GENETICS has changed along with the communities it serves: it is not your mentor''s journal.
The editors make decisions quickly – in around 30 days – without sacrificing the excellence and scholarship for which the journal has long been known. GENETICS is a peer reviewed, peer-edited journal, with an international reach and increasing visibility and impact. All editorial decisions are made through collaboration of at least two editors who are practicing scientists.
GENETICS is constantly innovating: expanded types of content include Reviews, Commentary (current issues of interest to geneticists), Perspectives (historical), Primers (to introduce primary literature into the classroom), Toolbox Reviews, plus YeastBook, FlyBook, and WormBook (coming spring 2016). For particularly time-sensitive results, we publish Communications. As part of our mission to serve our communities, we''ve published thematic collections, including Genomic Selection, Multiparental Populations, Mouse Collaborative Cross, and the Genetics of Sex.