激光诱导电子衍射:利用单个气相分子结构自身的一个电子进行成像。

IF 2.3 2区 物理与天体物理 Q3 CHEMISTRY, PHYSICAL
Structural Dynamics-Us Pub Date : 2024-08-30 eCollection Date: 2024-07-01 DOI:10.1063/4.0000237
K Chirvi, J Biegert
{"title":"激光诱导电子衍射:利用单个气相分子结构自身的一个电子进行成像。","authors":"K Chirvi, J Biegert","doi":"10.1063/4.0000237","DOIUrl":null,"url":null,"abstract":"<p><p>Among the many methods to image molecular structure, laser-induced electron diffraction (LIED) can image a single gas-phase molecule by locating all of a molecule's atoms in space and time. The method is based on attosecond electron recollision driven by a laser field and can reach attosecond temporal resolution. Implementation with a mid-IR laser and cold-target recoil ion-momentum spectroscopy, single molecules are measured with picometer resolution due to the keV electron impact energy without ensemble averaging or the need for molecular orientation. Nowadays, the method has evolved to detect single complex and chiral molecular structures in 3D. The review will touch on the various methods to discuss the implementations of LIED toward single-molecule imaging and complement the discussions with noteworthy experimental findings in the field.</p>","PeriodicalId":48683,"journal":{"name":"Structural Dynamics-Us","volume":"11 4","pages":"041301"},"PeriodicalIF":2.3000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11365610/pdf/","citationCount":"0","resultStr":"{\"title\":\"Laser-induced electron diffraction: Imaging of a single gas-phase molecular structure with one of its own electrons.\",\"authors\":\"K Chirvi, J Biegert\",\"doi\":\"10.1063/4.0000237\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Among the many methods to image molecular structure, laser-induced electron diffraction (LIED) can image a single gas-phase molecule by locating all of a molecule's atoms in space and time. The method is based on attosecond electron recollision driven by a laser field and can reach attosecond temporal resolution. Implementation with a mid-IR laser and cold-target recoil ion-momentum spectroscopy, single molecules are measured with picometer resolution due to the keV electron impact energy without ensemble averaging or the need for molecular orientation. Nowadays, the method has evolved to detect single complex and chiral molecular structures in 3D. The review will touch on the various methods to discuss the implementations of LIED toward single-molecule imaging and complement the discussions with noteworthy experimental findings in the field.</p>\",\"PeriodicalId\":48683,\"journal\":{\"name\":\"Structural Dynamics-Us\",\"volume\":\"11 4\",\"pages\":\"041301\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11365610/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structural Dynamics-Us\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/4.0000237\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Dynamics-Us","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/4.0000237","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

在众多分子结构成像方法中,激光诱导电子衍射(LIED)可以通过在空间和时间上定位分子的所有原子,对单个气相分子进行成像。该方法基于激光场驱动的阿秒级电子再碰撞,可达到阿秒级时间分辨率。利用中红外激光器和冷靶反冲离子动量光谱法,由于电子撞击能量为千伏安(keV),因此测量单分子的分辨率可达皮米级,而无需进行集合平均或分子定向。如今,该方法已发展到可以检测单个复杂和手性分子的三维结构。本综述将介绍各种方法,讨论 LIED 在单分子成像方面的应用,并以该领域值得关注的实验结果作为讨论的补充。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Laser-induced electron diffraction: Imaging of a single gas-phase molecular structure with one of its own electrons.

Among the many methods to image molecular structure, laser-induced electron diffraction (LIED) can image a single gas-phase molecule by locating all of a molecule's atoms in space and time. The method is based on attosecond electron recollision driven by a laser field and can reach attosecond temporal resolution. Implementation with a mid-IR laser and cold-target recoil ion-momentum spectroscopy, single molecules are measured with picometer resolution due to the keV electron impact energy without ensemble averaging or the need for molecular orientation. Nowadays, the method has evolved to detect single complex and chiral molecular structures in 3D. The review will touch on the various methods to discuss the implementations of LIED toward single-molecule imaging and complement the discussions with noteworthy experimental findings in the field.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Structural Dynamics-Us
Structural Dynamics-Us CHEMISTRY, PHYSICALPHYSICS, ATOMIC, MOLECU-PHYSICS, ATOMIC, MOLECULAR & CHEMICAL
CiteScore
5.50
自引率
3.60%
发文量
24
审稿时长
16 weeks
期刊介绍: Structural Dynamics focuses on the recent developments in experimental and theoretical methods and techniques that allow a visualization of the electronic and geometric structural changes in real time of chemical, biological, and condensed-matter systems. The community of scientists and engineers working on structural dynamics in such diverse systems often use similar instrumentation and methods. The journal welcomes articles dealing with fundamental problems of electronic and structural dynamics that are tackled by new methods, such as: Time-resolved X-ray and electron diffraction and scattering, Coherent diffractive imaging, Time-resolved X-ray spectroscopies (absorption, emission, resonant inelastic scattering, etc.), Time-resolved electron energy loss spectroscopy (EELS) and electron microscopy, Time-resolved photoelectron spectroscopies (UPS, XPS, ARPES, etc.), Multidimensional spectroscopies in the infrared, the visible and the ultraviolet, Nonlinear spectroscopies in the VUV, the soft and the hard X-ray domains, Theory and computational methods and algorithms for the analysis and description of structuraldynamics and their associated experimental signals. These new methods are enabled by new instrumentation, such as: X-ray free electron lasers, which provide flux, coherence, and time resolution, New sources of ultrashort electron pulses, New sources of ultrashort vacuum ultraviolet (VUV) to hard X-ray pulses, such as high-harmonic generation (HHG) sources or plasma-based sources, New sources of ultrashort infrared and terahertz (THz) radiation, New detectors for X-rays and electrons, New sample handling and delivery schemes, New computational capabilities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信