Enxiang Jiao, Ziru Sun, Meihong Xu, Ze Wu, Yuanbiao Liu, Kai Guo, Guiying Ren, Haijun Zhang, Baichao Liu
{"title":"[生物医学组织工程领域聚氨酯纤维电纺丝的研究进展]。","authors":"Enxiang Jiao, Ziru Sun, Meihong Xu, Ze Wu, Yuanbiao Liu, Kai Guo, Guiying Ren, Haijun Zhang, Baichao Liu","doi":"10.7507/1001-5515.202305051","DOIUrl":null,"url":null,"abstract":"<p><p>Polyurethane materials have good biocompatibility, blood compatibility, mechanical properties, fatigue resistance and processability, and have always been highly valued as medical materials. Polyurethane fibers prepared by electrostatic spinning technology can better mimic the structure of natural extracellular matrices (ECMs), and seed cells can adhere and proliferate better to meet the requirements of tissue repair and reconstruction. The purpose of this review is to present the research progress of electrostatically spun polyurethane fibers in bone tissue engineering, skin tissue engineering, neural tissue engineering, vascular tissue engineering and cardiac tissue engineering, so that researchers can understand the practical applications of electrostatically spun polyurethane fibers in tissue engineering and regenerative medicine.</p>","PeriodicalId":39324,"journal":{"name":"生物医学工程学杂志","volume":"41 4","pages":"840-847"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11366452/pdf/","citationCount":"0","resultStr":"{\"title\":\"[Research progress of electrospinning polyurethane fiber in the field of biomedical tissue engineering].\",\"authors\":\"Enxiang Jiao, Ziru Sun, Meihong Xu, Ze Wu, Yuanbiao Liu, Kai Guo, Guiying Ren, Haijun Zhang, Baichao Liu\",\"doi\":\"10.7507/1001-5515.202305051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Polyurethane materials have good biocompatibility, blood compatibility, mechanical properties, fatigue resistance and processability, and have always been highly valued as medical materials. Polyurethane fibers prepared by electrostatic spinning technology can better mimic the structure of natural extracellular matrices (ECMs), and seed cells can adhere and proliferate better to meet the requirements of tissue repair and reconstruction. The purpose of this review is to present the research progress of electrostatically spun polyurethane fibers in bone tissue engineering, skin tissue engineering, neural tissue engineering, vascular tissue engineering and cardiac tissue engineering, so that researchers can understand the practical applications of electrostatically spun polyurethane fibers in tissue engineering and regenerative medicine.</p>\",\"PeriodicalId\":39324,\"journal\":{\"name\":\"生物医学工程学杂志\",\"volume\":\"41 4\",\"pages\":\"840-847\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11366452/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"生物医学工程学杂志\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.7507/1001-5515.202305051\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"生物医学工程学杂志","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.7507/1001-5515.202305051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
[Research progress of electrospinning polyurethane fiber in the field of biomedical tissue engineering].
Polyurethane materials have good biocompatibility, blood compatibility, mechanical properties, fatigue resistance and processability, and have always been highly valued as medical materials. Polyurethane fibers prepared by electrostatic spinning technology can better mimic the structure of natural extracellular matrices (ECMs), and seed cells can adhere and proliferate better to meet the requirements of tissue repair and reconstruction. The purpose of this review is to present the research progress of electrostatically spun polyurethane fibers in bone tissue engineering, skin tissue engineering, neural tissue engineering, vascular tissue engineering and cardiac tissue engineering, so that researchers can understand the practical applications of electrostatically spun polyurethane fibers in tissue engineering and regenerative medicine.