{"title":"[前额单通道脑电信号的疲劳特征提取和分类算法]。","authors":"Huizhou Yang, Yunfei Liu, Lijuan Xia","doi":"10.7507/1001-5515.202312026","DOIUrl":null,"url":null,"abstract":"<p><p>Aiming at the problem that the feature extraction ability of forehead single-channel electroencephalography (EEG) signals is insufficient, which leads to decreased fatigue detection accuracy, a fatigue feature extraction and classification algorithm based on supervised contrastive learning is proposed. Firstly, the raw signals are filtered by empirical modal decomposition to improve the signal-to-noise ratio. Secondly, considering the limitation of the one-dimensional signal in information expression, overlapping sampling is used to transform the signal into a two-dimensional structure, and simultaneously express the short-term and long-term changes of the signal. The feature extraction network is constructed by depthwise separable convolution to accelerate model operation. Finally, the model is globally optimized by combining the supervised contrastive loss and the mean square error loss. Experiments show that the average accuracy of the algorithm for classifying three fatigue states can reach 75.80%, which is greatly improved compared with other advanced algorithms, and the accuracy and feasibility of fatigue detection by single-channel EEG signals are significantly improved. The results provide strong support for the application of single-channel EEG signals, and also provide a new idea for fatigue detection research.</p>","PeriodicalId":39324,"journal":{"name":"生物医学工程学杂志","volume":"41 4","pages":"732-741"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11366466/pdf/","citationCount":"0","resultStr":"{\"title\":\"[Fatigue feature extraction and classification algorithm of forehead single-channel electroencephalography signals].\",\"authors\":\"Huizhou Yang, Yunfei Liu, Lijuan Xia\",\"doi\":\"10.7507/1001-5515.202312026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Aiming at the problem that the feature extraction ability of forehead single-channel electroencephalography (EEG) signals is insufficient, which leads to decreased fatigue detection accuracy, a fatigue feature extraction and classification algorithm based on supervised contrastive learning is proposed. Firstly, the raw signals are filtered by empirical modal decomposition to improve the signal-to-noise ratio. Secondly, considering the limitation of the one-dimensional signal in information expression, overlapping sampling is used to transform the signal into a two-dimensional structure, and simultaneously express the short-term and long-term changes of the signal. The feature extraction network is constructed by depthwise separable convolution to accelerate model operation. Finally, the model is globally optimized by combining the supervised contrastive loss and the mean square error loss. Experiments show that the average accuracy of the algorithm for classifying three fatigue states can reach 75.80%, which is greatly improved compared with other advanced algorithms, and the accuracy and feasibility of fatigue detection by single-channel EEG signals are significantly improved. The results provide strong support for the application of single-channel EEG signals, and also provide a new idea for fatigue detection research.</p>\",\"PeriodicalId\":39324,\"journal\":{\"name\":\"生物医学工程学杂志\",\"volume\":\"41 4\",\"pages\":\"732-741\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11366466/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"生物医学工程学杂志\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.7507/1001-5515.202312026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"生物医学工程学杂志","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.7507/1001-5515.202312026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
[Fatigue feature extraction and classification algorithm of forehead single-channel electroencephalography signals].
Aiming at the problem that the feature extraction ability of forehead single-channel electroencephalography (EEG) signals is insufficient, which leads to decreased fatigue detection accuracy, a fatigue feature extraction and classification algorithm based on supervised contrastive learning is proposed. Firstly, the raw signals are filtered by empirical modal decomposition to improve the signal-to-noise ratio. Secondly, considering the limitation of the one-dimensional signal in information expression, overlapping sampling is used to transform the signal into a two-dimensional structure, and simultaneously express the short-term and long-term changes of the signal. The feature extraction network is constructed by depthwise separable convolution to accelerate model operation. Finally, the model is globally optimized by combining the supervised contrastive loss and the mean square error loss. Experiments show that the average accuracy of the algorithm for classifying three fatigue states can reach 75.80%, which is greatly improved compared with other advanced algorithms, and the accuracy and feasibility of fatigue detection by single-channel EEG signals are significantly improved. The results provide strong support for the application of single-channel EEG signals, and also provide a new idea for fatigue detection research.