SpikeFlow:自动、灵活地分析带有尖峰控制的 ChIP-Seq 数据。

IF 4 Q1 GENETICS & HEREDITY
NAR Genomics and Bioinformatics Pub Date : 2024-08-29 eCollection Date: 2024-09-01 DOI:10.1093/nargab/lqae118
Davide Bressan, Daniel Fernández-Pérez, Alessandro Romanel, Fulvio Chiacchiera
{"title":"SpikeFlow:自动、灵活地分析带有尖峰控制的 ChIP-Seq 数据。","authors":"Davide Bressan, Daniel Fernández-Pérez, Alessandro Romanel, Fulvio Chiacchiera","doi":"10.1093/nargab/lqae118","DOIUrl":null,"url":null,"abstract":"<p><p>ChIP with reference exogenous genome (ChIP-Rx) is widely used to study histone modification changes across different biological conditions. A key step in the bioinformatics analysis of this data is calculating the normalization factors, which vary from the standard ChIP-seq pipelines. Choosing and applying the appropriate normalization method is crucial for interpreting the biological results. However, a comprehensive pipeline for complete ChIP-Rx data analysis is lacking. To address these challenges, we introduce SpikeFlow, an integrated Snakemake workflow that combines features from various existing tools to streamline ChIP-Rx data processing and enhance usability. SpikeFlow automates spike-in data scaling and provides multiple normalization options. It also performs peak calling and differential analysis with distinct modalities, enabling the detection of enrichment regions for histone modifications and transcription factor binding. Our workflow runs in-depth quality control at all the processing steps and generates an analysis report with tables and graphs to facilitate results interpretation. We validated the pipeline by performing a comparative analysis with DiffBind and SpikChIP, demonstrating robust performances in various biological models. By combining diverse functionalities into a single platform, SpikeFlow aims to simplify ChIP-Rx data analysis for the research community.</p>","PeriodicalId":33994,"journal":{"name":"NAR Genomics and Bioinformatics","volume":"6 3","pages":"lqae118"},"PeriodicalIF":4.0000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11358820/pdf/","citationCount":"0","resultStr":"{\"title\":\"SpikeFlow: automated and flexible analysis of ChIP-Seq data with spike-in control.\",\"authors\":\"Davide Bressan, Daniel Fernández-Pérez, Alessandro Romanel, Fulvio Chiacchiera\",\"doi\":\"10.1093/nargab/lqae118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>ChIP with reference exogenous genome (ChIP-Rx) is widely used to study histone modification changes across different biological conditions. A key step in the bioinformatics analysis of this data is calculating the normalization factors, which vary from the standard ChIP-seq pipelines. Choosing and applying the appropriate normalization method is crucial for interpreting the biological results. However, a comprehensive pipeline for complete ChIP-Rx data analysis is lacking. To address these challenges, we introduce SpikeFlow, an integrated Snakemake workflow that combines features from various existing tools to streamline ChIP-Rx data processing and enhance usability. SpikeFlow automates spike-in data scaling and provides multiple normalization options. It also performs peak calling and differential analysis with distinct modalities, enabling the detection of enrichment regions for histone modifications and transcription factor binding. Our workflow runs in-depth quality control at all the processing steps and generates an analysis report with tables and graphs to facilitate results interpretation. We validated the pipeline by performing a comparative analysis with DiffBind and SpikChIP, demonstrating robust performances in various biological models. By combining diverse functionalities into a single platform, SpikeFlow aims to simplify ChIP-Rx data analysis for the research community.</p>\",\"PeriodicalId\":33994,\"journal\":{\"name\":\"NAR Genomics and Bioinformatics\",\"volume\":\"6 3\",\"pages\":\"lqae118\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11358820/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NAR Genomics and Bioinformatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/nargab/lqae118\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NAR Genomics and Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/nargab/lqae118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

参考外源基因组 ChIP(ChIP-Rx)被广泛用于研究不同生物条件下组蛋白修饰的变化。对这种数据进行生物信息学分析的一个关键步骤是计算归一化因子,这些因子与标准的 ChIP-seq 管道不同。选择和应用适当的归一化方法对解释生物学结果至关重要。然而,目前还缺乏一套完整的 ChIP-Rx 数据分析管道。为了应对这些挑战,我们推出了 SpikeFlow,这是一个集成的 Snakemake 工作流程,它结合了各种现有工具的功能,可简化 ChIP-Rx 数据处理并提高可用性。SpikeFlow 可自动缩放尖峰数据,并提供多种归一化选项。它还能以不同的模式进行峰值调用和差异分析,从而检测组蛋白修饰和转录因子结合的富集区。我们的工作流程在所有处理步骤中都进行了深入的质量控制,并生成带表格和图表的分析报告,以方便结果解读。我们通过与 DiffBind 和 SpikChIP 进行比较分析,验证了这一工作流程,并在各种生物模型中证明了其强大的性能。SpikeFlow 将多种功能整合到一个平台中,旨在简化研究界的 ChIP-Rx 数据分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SpikeFlow: automated and flexible analysis of ChIP-Seq data with spike-in control.

ChIP with reference exogenous genome (ChIP-Rx) is widely used to study histone modification changes across different biological conditions. A key step in the bioinformatics analysis of this data is calculating the normalization factors, which vary from the standard ChIP-seq pipelines. Choosing and applying the appropriate normalization method is crucial for interpreting the biological results. However, a comprehensive pipeline for complete ChIP-Rx data analysis is lacking. To address these challenges, we introduce SpikeFlow, an integrated Snakemake workflow that combines features from various existing tools to streamline ChIP-Rx data processing and enhance usability. SpikeFlow automates spike-in data scaling and provides multiple normalization options. It also performs peak calling and differential analysis with distinct modalities, enabling the detection of enrichment regions for histone modifications and transcription factor binding. Our workflow runs in-depth quality control at all the processing steps and generates an analysis report with tables and graphs to facilitate results interpretation. We validated the pipeline by performing a comparative analysis with DiffBind and SpikChIP, demonstrating robust performances in various biological models. By combining diverse functionalities into a single platform, SpikeFlow aims to simplify ChIP-Rx data analysis for the research community.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.00
自引率
2.20%
发文量
95
审稿时长
15 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信