{"title":"在构造测量的潜在变化中建立构造随时间变化的模型:纵向调节因子分析方法。","authors":"Siyuan Marco Chen, Daniel J Bauer","doi":"10.1037/met0000685","DOIUrl":null,"url":null,"abstract":"<p><p>In analyzing longitudinal data with growth curve models, a critical assumption is that changes in the observed measures reflect construct changes and not changes in the manifestation of the construct over time. However, growth curve models are often fit to a repeated measure constructed as a sum or mean of scale items, making an implicit assumption of constancy of measurement. This practice risks confounding actual construct change with changes in measurement (i.e., differential item functioning [DIF]), threatening the validity of conclusions. An improved method that avoids such confounding is the second-order growth curve (SGC) model. It specifies a measurement model at each occasion of measurement that can be evaluated for invariance over time. The applicability of the SGC model is hindered by key limitations: (a) the SGC model treats time as continuous when modeling construct growth but as discrete when modeling measurement, reducing interpretability and parsimony; (b) the evaluation of DIF becomes increasingly error-prone given multiple timepoints and groups; (c) DIF associated with continuous covariates is difficult to incorporate. Drawing on moderated nonlinear factor analysis, we propose an alternative approach that provides a parsimonious framework for including many time points and DIF from different types of covariates. We implement this model through Bayesian estimation, allowing for incorporation of regularizing priors to facilitate efficient evaluation of DIF. We demonstrate a two-step workflow of measurement evaluation and growth modeling, with an empirical example examining changes in adolescent delinquency over time. (PsycInfo Database Record (c) 2024 APA, all rights reserved).</p>","PeriodicalId":20782,"journal":{"name":"Psychological methods","volume":null,"pages":null},"PeriodicalIF":7.6000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling construct change over time amidst potential changes in construct measurement: A longitudinal moderated factor analysis approach.\",\"authors\":\"Siyuan Marco Chen, Daniel J Bauer\",\"doi\":\"10.1037/met0000685\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In analyzing longitudinal data with growth curve models, a critical assumption is that changes in the observed measures reflect construct changes and not changes in the manifestation of the construct over time. However, growth curve models are often fit to a repeated measure constructed as a sum or mean of scale items, making an implicit assumption of constancy of measurement. This practice risks confounding actual construct change with changes in measurement (i.e., differential item functioning [DIF]), threatening the validity of conclusions. An improved method that avoids such confounding is the second-order growth curve (SGC) model. It specifies a measurement model at each occasion of measurement that can be evaluated for invariance over time. The applicability of the SGC model is hindered by key limitations: (a) the SGC model treats time as continuous when modeling construct growth but as discrete when modeling measurement, reducing interpretability and parsimony; (b) the evaluation of DIF becomes increasingly error-prone given multiple timepoints and groups; (c) DIF associated with continuous covariates is difficult to incorporate. Drawing on moderated nonlinear factor analysis, we propose an alternative approach that provides a parsimonious framework for including many time points and DIF from different types of covariates. We implement this model through Bayesian estimation, allowing for incorporation of regularizing priors to facilitate efficient evaluation of DIF. We demonstrate a two-step workflow of measurement evaluation and growth modeling, with an empirical example examining changes in adolescent delinquency over time. (PsycInfo Database Record (c) 2024 APA, all rights reserved).</p>\",\"PeriodicalId\":20782,\"journal\":{\"name\":\"Psychological methods\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Psychological methods\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1037/met0000685\",\"RegionNum\":1,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PSYCHOLOGY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychological methods","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1037/met0000685","RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHOLOGY, MULTIDISCIPLINARY","Score":null,"Total":0}
Modeling construct change over time amidst potential changes in construct measurement: A longitudinal moderated factor analysis approach.
In analyzing longitudinal data with growth curve models, a critical assumption is that changes in the observed measures reflect construct changes and not changes in the manifestation of the construct over time. However, growth curve models are often fit to a repeated measure constructed as a sum or mean of scale items, making an implicit assumption of constancy of measurement. This practice risks confounding actual construct change with changes in measurement (i.e., differential item functioning [DIF]), threatening the validity of conclusions. An improved method that avoids such confounding is the second-order growth curve (SGC) model. It specifies a measurement model at each occasion of measurement that can be evaluated for invariance over time. The applicability of the SGC model is hindered by key limitations: (a) the SGC model treats time as continuous when modeling construct growth but as discrete when modeling measurement, reducing interpretability and parsimony; (b) the evaluation of DIF becomes increasingly error-prone given multiple timepoints and groups; (c) DIF associated with continuous covariates is difficult to incorporate. Drawing on moderated nonlinear factor analysis, we propose an alternative approach that provides a parsimonious framework for including many time points and DIF from different types of covariates. We implement this model through Bayesian estimation, allowing for incorporation of regularizing priors to facilitate efficient evaluation of DIF. We demonstrate a two-step workflow of measurement evaluation and growth modeling, with an empirical example examining changes in adolescent delinquency over time. (PsycInfo Database Record (c) 2024 APA, all rights reserved).
期刊介绍:
Psychological Methods is devoted to the development and dissemination of methods for collecting, analyzing, understanding, and interpreting psychological data. Its purpose is the dissemination of innovations in research design, measurement, methodology, and quantitative and qualitative analysis to the psychological community; its further purpose is to promote effective communication about related substantive and methodological issues. The audience is expected to be diverse and to include those who develop new procedures, those who are responsible for undergraduate and graduate training in design, measurement, and statistics, as well as those who employ those procedures in research.