发现对鲍曼不动杆菌感染有疗效的 GuaB 抑制剂。

IF 5.1 1区 生物学 Q1 MICROBIOLOGY
mBio Pub Date : 2024-10-16 Epub Date: 2024-08-29 DOI:10.1128/mbio.00897-24
Eric M Kofoed, Ignacio Aliagas, Terry Crawford, Jialin Mao, Seth F Harris, Min Xu, Shumei Wang, Ping Wu, Fang Ma, Kevin Clark, Jessica Sims, Yiming Xu, Yutian Peng, Elizabeth Skippington, Ying Yang, Janina Reeder, Savita Ubhayakar, Matt Baumgardner, Zhengyin Yan, Jacob Chen, Summer Park, Hua Zhang, Chun-Wan Yen, Maria Lorenzo, Nicholas Skelton, Xiaorong Liang, Liuxi Chen, Bridget Hoag, Chun Sing Li, Zhiguo Liu, John Wai, Xingrong Liu, Jun Liang, Man Wah Tan
{"title":"发现对鲍曼不动杆菌感染有疗效的 GuaB 抑制剂。","authors":"Eric M Kofoed, Ignacio Aliagas, Terry Crawford, Jialin Mao, Seth F Harris, Min Xu, Shumei Wang, Ping Wu, Fang Ma, Kevin Clark, Jessica Sims, Yiming Xu, Yutian Peng, Elizabeth Skippington, Ying Yang, Janina Reeder, Savita Ubhayakar, Matt Baumgardner, Zhengyin Yan, Jacob Chen, Summer Park, Hua Zhang, Chun-Wan Yen, Maria Lorenzo, Nicholas Skelton, Xiaorong Liang, Liuxi Chen, Bridget Hoag, Chun Sing Li, Zhiguo Liu, John Wai, Xingrong Liu, Jun Liang, Man Wah Tan","doi":"10.1128/mbio.00897-24","DOIUrl":null,"url":null,"abstract":"<p><p>Guanine nucleotides are required for growth and viability of cells due to their structural role in DNA and RNA, and their regulatory roles in translation, signal transduction, and cell division. The natural antibiotic mycophenolic acid (MPA) targets the rate-limiting step in <i>de novo</i> guanine nucleotide biosynthesis executed by inosine-5´-monophosphate dehydrogenase (IMPDH). MPA is used clinically as an immunosuppressant, but whether <i>in vivo</i> inhibition of bacterial IMPDH (GuaB) is a valid antibacterial strategy is controversial. Here, we describe the discovery of extremely potent small molecule GuaB inhibitors (GuaBi) specific to pathogenic bacteria with a low frequency of on-target spontaneous resistance and bactericidal efficacy <i>in vivo</i> against <i>Acinetobacter baumannii</i> mouse models of infection. The spectrum of GuaBi activity includes multidrug-resistant pathogens that are a critical priority of new antibiotic development. Co-crystal structures of <i>A. baumannii, Staphylococcus aureus</i>, and <i>Escherichia coli</i> GuaB proteins bound to inhibitors show comparable binding modes of GuaBi across species and identifies key binding site residues that are predictive of whole-cell activity across both Gram-positive and Gram-negative clades of Bacteria. The clear <i>in vivo</i> efficacy of these small molecule GuaB inhibitors in a model of <i>A. baumannii</i> infection validates GuaB as an essential antibiotic target.</p><p><strong>Importance: </strong>The emergence of multidrug-resistant bacteria worldwide has renewed interest in discovering antibiotics with novel mechanism of action. For the first time ever, we demonstrate that pharmacological inhibition of <i>de novo</i> guanine biosynthesis is bactericidal in a mouse model of <i>Acinetobacter baumannii</i> infection. Structural analyses of novel inhibitors explain differences in biochemical and whole-cell activity across bacterial clades and underscore why this discovery may have broad translational impact on treatment of the most recalcitrant bacterial infections.</p>","PeriodicalId":18315,"journal":{"name":"mBio","volume":null,"pages":null},"PeriodicalIF":5.1000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11481871/pdf/","citationCount":"0","resultStr":"{\"title\":\"Discovery of GuaB inhibitors with efficacy against <i>Acinetobacter baumannii</i> infection.\",\"authors\":\"Eric M Kofoed, Ignacio Aliagas, Terry Crawford, Jialin Mao, Seth F Harris, Min Xu, Shumei Wang, Ping Wu, Fang Ma, Kevin Clark, Jessica Sims, Yiming Xu, Yutian Peng, Elizabeth Skippington, Ying Yang, Janina Reeder, Savita Ubhayakar, Matt Baumgardner, Zhengyin Yan, Jacob Chen, Summer Park, Hua Zhang, Chun-Wan Yen, Maria Lorenzo, Nicholas Skelton, Xiaorong Liang, Liuxi Chen, Bridget Hoag, Chun Sing Li, Zhiguo Liu, John Wai, Xingrong Liu, Jun Liang, Man Wah Tan\",\"doi\":\"10.1128/mbio.00897-24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Guanine nucleotides are required for growth and viability of cells due to their structural role in DNA and RNA, and their regulatory roles in translation, signal transduction, and cell division. The natural antibiotic mycophenolic acid (MPA) targets the rate-limiting step in <i>de novo</i> guanine nucleotide biosynthesis executed by inosine-5´-monophosphate dehydrogenase (IMPDH). MPA is used clinically as an immunosuppressant, but whether <i>in vivo</i> inhibition of bacterial IMPDH (GuaB) is a valid antibacterial strategy is controversial. Here, we describe the discovery of extremely potent small molecule GuaB inhibitors (GuaBi) specific to pathogenic bacteria with a low frequency of on-target spontaneous resistance and bactericidal efficacy <i>in vivo</i> against <i>Acinetobacter baumannii</i> mouse models of infection. The spectrum of GuaBi activity includes multidrug-resistant pathogens that are a critical priority of new antibiotic development. Co-crystal structures of <i>A. baumannii, Staphylococcus aureus</i>, and <i>Escherichia coli</i> GuaB proteins bound to inhibitors show comparable binding modes of GuaBi across species and identifies key binding site residues that are predictive of whole-cell activity across both Gram-positive and Gram-negative clades of Bacteria. The clear <i>in vivo</i> efficacy of these small molecule GuaB inhibitors in a model of <i>A. baumannii</i> infection validates GuaB as an essential antibiotic target.</p><p><strong>Importance: </strong>The emergence of multidrug-resistant bacteria worldwide has renewed interest in discovering antibiotics with novel mechanism of action. For the first time ever, we demonstrate that pharmacological inhibition of <i>de novo</i> guanine biosynthesis is bactericidal in a mouse model of <i>Acinetobacter baumannii</i> infection. Structural analyses of novel inhibitors explain differences in biochemical and whole-cell activity across bacterial clades and underscore why this discovery may have broad translational impact on treatment of the most recalcitrant bacterial infections.</p>\",\"PeriodicalId\":18315,\"journal\":{\"name\":\"mBio\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11481871/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"mBio\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1128/mbio.00897-24\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"mBio","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/mbio.00897-24","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/29 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

由于鸟嘌呤核苷酸在 DNA 和 RNA 中的结构作用,以及在翻译、信号转导和细胞分裂中的调控作用,细胞的生长和存活都需要鸟嘌呤核苷酸。天然抗生素霉酚酸(MPA)针对的是由肌苷-5´-单磷酸脱氢酶(IMPDH)执行的鸟嘌呤核苷酸新生物合成过程中的限速步骤。MPA 在临床上被用作免疫抑制剂,但体内抑制细菌 IMPDH(GuaB)是否是一种有效的抗菌策略还存在争议。在这里,我们描述了对致病菌特异性极强的小分子 GuaB 抑制剂(GuaBi)的发现,这些抑制剂在体内对鲍曼不动杆菌小鼠感染模型具有低靶向自发耐药性和杀菌效力。GuaBi 的活性范围包括多重耐药病原体,这些病原体是新抗生素开发的重点。鲍曼不动杆菌、金黄色葡萄球菌和大肠杆菌 GuaB 蛋白与抑制剂结合的共晶体结构显示,不同物种的 GuaBi 具有相似的结合模式,并确定了可预测革兰氏阳性和革兰氏阴性细菌全细胞活性的关键结合位点残基。这些小分子 GuaB 抑制剂在鲍曼不动杆菌感染模型中的明显体内疗效验证了 GuaB 是一个重要的抗生素靶点:全球范围内出现的多重耐药细菌再次激发了人们对发现具有新作用机制的抗生素的兴趣。我们首次证明,在鲍曼不动杆菌感染的小鼠模型中,药物抑制鸟嘌呤从头生物合成具有杀菌作用。新型抑制剂的结构分析解释了不同细菌支系在生化和全细胞活性方面的差异,并强调了这一发现可能对治疗最顽固的细菌感染产生广泛影响的原因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Discovery of GuaB inhibitors with efficacy against Acinetobacter baumannii infection.

Guanine nucleotides are required for growth and viability of cells due to their structural role in DNA and RNA, and their regulatory roles in translation, signal transduction, and cell division. The natural antibiotic mycophenolic acid (MPA) targets the rate-limiting step in de novo guanine nucleotide biosynthesis executed by inosine-5´-monophosphate dehydrogenase (IMPDH). MPA is used clinically as an immunosuppressant, but whether in vivo inhibition of bacterial IMPDH (GuaB) is a valid antibacterial strategy is controversial. Here, we describe the discovery of extremely potent small molecule GuaB inhibitors (GuaBi) specific to pathogenic bacteria with a low frequency of on-target spontaneous resistance and bactericidal efficacy in vivo against Acinetobacter baumannii mouse models of infection. The spectrum of GuaBi activity includes multidrug-resistant pathogens that are a critical priority of new antibiotic development. Co-crystal structures of A. baumannii, Staphylococcus aureus, and Escherichia coli GuaB proteins bound to inhibitors show comparable binding modes of GuaBi across species and identifies key binding site residues that are predictive of whole-cell activity across both Gram-positive and Gram-negative clades of Bacteria. The clear in vivo efficacy of these small molecule GuaB inhibitors in a model of A. baumannii infection validates GuaB as an essential antibiotic target.

Importance: The emergence of multidrug-resistant bacteria worldwide has renewed interest in discovering antibiotics with novel mechanism of action. For the first time ever, we demonstrate that pharmacological inhibition of de novo guanine biosynthesis is bactericidal in a mouse model of Acinetobacter baumannii infection. Structural analyses of novel inhibitors explain differences in biochemical and whole-cell activity across bacterial clades and underscore why this discovery may have broad translational impact on treatment of the most recalcitrant bacterial infections.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
mBio
mBio MICROBIOLOGY-
CiteScore
10.50
自引率
3.10%
发文量
762
审稿时长
1 months
期刊介绍: mBio® is ASM''s first broad-scope, online-only, open access journal. mBio offers streamlined review and publication of the best research in microbiology and allied fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信