大型语言模型在肺-RADS 相关问题上的性能比较。

IF 3.2 Q2 ONCOLOGY
Eren Çamur, Turay Cesur, Yasin Celal Güneş
{"title":"大型语言模型在肺-RADS 相关问题上的性能比较。","authors":"Eren Çamur, Turay Cesur, Yasin Celal Güneş","doi":"10.1200/GO.24.00200","DOIUrl":null,"url":null,"abstract":"<p><p>This study evaluates LLM integration in interpreting Lung-RADS for lung cancer screening, highlighting their innovative role in enhancing radiological practice. Our findings reveal that Claude 3 Opus and Perplexity achieved a 96% accuracy rate, outperforming other models.</p>","PeriodicalId":14806,"journal":{"name":"JCO Global Oncology","volume":"10 ","pages":"e2400200"},"PeriodicalIF":3.2000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparison of Performance of Large Language Models on Lung-RADS Related Questions.\",\"authors\":\"Eren Çamur, Turay Cesur, Yasin Celal Güneş\",\"doi\":\"10.1200/GO.24.00200\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study evaluates LLM integration in interpreting Lung-RADS for lung cancer screening, highlighting their innovative role in enhancing radiological practice. Our findings reveal that Claude 3 Opus and Perplexity achieved a 96% accuracy rate, outperforming other models.</p>\",\"PeriodicalId\":14806,\"journal\":{\"name\":\"JCO Global Oncology\",\"volume\":\"10 \",\"pages\":\"e2400200\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JCO Global Oncology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1200/GO.24.00200\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JCO Global Oncology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1200/GO.24.00200","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本研究评估了 LLM 集成在肺癌筛查 Lung-RADS 解释中的情况,突出了其在提高放射学实践中的创新作用。我们的研究结果表明,Claude 3 Opus 和 Perplexity 的准确率达到 96%,优于其他模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparison of Performance of Large Language Models on Lung-RADS Related Questions.

This study evaluates LLM integration in interpreting Lung-RADS for lung cancer screening, highlighting their innovative role in enhancing radiological practice. Our findings reveal that Claude 3 Opus and Perplexity achieved a 96% accuracy rate, outperforming other models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
JCO Global Oncology
JCO Global Oncology Medicine-Oncology
CiteScore
6.70
自引率
6.70%
发文量
310
审稿时长
7 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信