Christopher M Florkowski, Vanessa Buchan, Bobby V Li, Felicity Taylor, Minh Phan, Martin Than, John W Pickering
{"title":"Atellica VTLi 护理点高灵敏度肌钙蛋白 I 检测的分析验证。","authors":"Christopher M Florkowski, Vanessa Buchan, Bobby V Li, Felicity Taylor, Minh Phan, Martin Than, John W Pickering","doi":"10.1515/cclm-2024-0312","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>The Siemens Point-of-Care Testing (POC) Atellica<sup>®</sup> VTLi high-sensitivity troponin I (hsTnI) device has been previously validated. Verification independently provides evidence that an analytical procedure fulfils concordance with laboratory assays, imprecision, and hemolysis interference requirements.</p><p><strong>Methods: </strong>Five whole blood samples spanning the measuring interval were analysed 20 times in succession. Hemolysis interference was assessed at three troponin concentrations by spiking five hemolysate concentrations to plasma to achieve free hemoglobin concentrations 35-1,000 mg/dL. Concordance between whole blood (VTLi) and plasma on laboratory analysers (Beckman, Roche, Siemens) was assessed by Pearson correlation and kappa statistics at the (LOQ) and upper reference limit (URL). This was repeated for frozen plasma samples.</p><p><strong>Results: </strong>Coefficients of variation for whole blood were <10 % for whole blood troponin concentrations of 9.2 and 15.9 ng/L, thus below the URL. Hemolysis positively interfered; at 250 mg/dL affecting the low troponin sample (+3 ng/L; +60 %) and high troponin sample (+37 ng/L; +24 %). Correlation coefficients were 0.98, 0.90 and 0.97 between VTLi and Beckman, Roche and Siemens assays respectively. Corresponding kappa statistics were 0.80, 0.73 and 0.84 at the LOQ and 0.70, 0.44 and 0.67 at the URL.</p><p><strong>Conclusions: </strong>Concordances between VTLi and laboratory assays were at least non-inferior to those between laboratory assays. Imprecision met manufacturer claims and was consistent with a high sensitivity assay. There is potential for hemolysis interference, highlighting the need for quality samples. The results support performance characteristics previously reported in validation studies, and the device offers acceptable performance for use within intended medical settings.</p>","PeriodicalId":10390,"journal":{"name":"Clinical chemistry and laboratory medicine","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analytical verification of the Atellica VTLi point of care high sensitivity troponin I assay.\",\"authors\":\"Christopher M Florkowski, Vanessa Buchan, Bobby V Li, Felicity Taylor, Minh Phan, Martin Than, John W Pickering\",\"doi\":\"10.1515/cclm-2024-0312\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>The Siemens Point-of-Care Testing (POC) Atellica<sup>®</sup> VTLi high-sensitivity troponin I (hsTnI) device has been previously validated. Verification independently provides evidence that an analytical procedure fulfils concordance with laboratory assays, imprecision, and hemolysis interference requirements.</p><p><strong>Methods: </strong>Five whole blood samples spanning the measuring interval were analysed 20 times in succession. Hemolysis interference was assessed at three troponin concentrations by spiking five hemolysate concentrations to plasma to achieve free hemoglobin concentrations 35-1,000 mg/dL. Concordance between whole blood (VTLi) and plasma on laboratory analysers (Beckman, Roche, Siemens) was assessed by Pearson correlation and kappa statistics at the (LOQ) and upper reference limit (URL). This was repeated for frozen plasma samples.</p><p><strong>Results: </strong>Coefficients of variation for whole blood were <10 % for whole blood troponin concentrations of 9.2 and 15.9 ng/L, thus below the URL. Hemolysis positively interfered; at 250 mg/dL affecting the low troponin sample (+3 ng/L; +60 %) and high troponin sample (+37 ng/L; +24 %). Correlation coefficients were 0.98, 0.90 and 0.97 between VTLi and Beckman, Roche and Siemens assays respectively. Corresponding kappa statistics were 0.80, 0.73 and 0.84 at the LOQ and 0.70, 0.44 and 0.67 at the URL.</p><p><strong>Conclusions: </strong>Concordances between VTLi and laboratory assays were at least non-inferior to those between laboratory assays. Imprecision met manufacturer claims and was consistent with a high sensitivity assay. There is potential for hemolysis interference, highlighting the need for quality samples. The results support performance characteristics previously reported in validation studies, and the device offers acceptable performance for use within intended medical settings.</p>\",\"PeriodicalId\":10390,\"journal\":{\"name\":\"Clinical chemistry and laboratory medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical chemistry and laboratory medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1515/cclm-2024-0312\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICAL LABORATORY TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical chemistry and laboratory medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1515/cclm-2024-0312","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICAL LABORATORY TECHNOLOGY","Score":null,"Total":0}
Analytical verification of the Atellica VTLi point of care high sensitivity troponin I assay.
Objectives: The Siemens Point-of-Care Testing (POC) Atellica® VTLi high-sensitivity troponin I (hsTnI) device has been previously validated. Verification independently provides evidence that an analytical procedure fulfils concordance with laboratory assays, imprecision, and hemolysis interference requirements.
Methods: Five whole blood samples spanning the measuring interval were analysed 20 times in succession. Hemolysis interference was assessed at three troponin concentrations by spiking five hemolysate concentrations to plasma to achieve free hemoglobin concentrations 35-1,000 mg/dL. Concordance between whole blood (VTLi) and plasma on laboratory analysers (Beckman, Roche, Siemens) was assessed by Pearson correlation and kappa statistics at the (LOQ) and upper reference limit (URL). This was repeated for frozen plasma samples.
Results: Coefficients of variation for whole blood were <10 % for whole blood troponin concentrations of 9.2 and 15.9 ng/L, thus below the URL. Hemolysis positively interfered; at 250 mg/dL affecting the low troponin sample (+3 ng/L; +60 %) and high troponin sample (+37 ng/L; +24 %). Correlation coefficients were 0.98, 0.90 and 0.97 between VTLi and Beckman, Roche and Siemens assays respectively. Corresponding kappa statistics were 0.80, 0.73 and 0.84 at the LOQ and 0.70, 0.44 and 0.67 at the URL.
Conclusions: Concordances between VTLi and laboratory assays were at least non-inferior to those between laboratory assays. Imprecision met manufacturer claims and was consistent with a high sensitivity assay. There is potential for hemolysis interference, highlighting the need for quality samples. The results support performance characteristics previously reported in validation studies, and the device offers acceptable performance for use within intended medical settings.
期刊介绍:
Clinical Chemistry and Laboratory Medicine (CCLM) publishes articles on novel teaching and training methods applicable to laboratory medicine. CCLM welcomes contributions on the progress in fundamental and applied research and cutting-edge clinical laboratory medicine. It is one of the leading journals in the field, with an impact factor over 3. CCLM is issued monthly, and it is published in print and electronically.
CCLM is the official journal of the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM) and publishes regularly EFLM recommendations and news. CCLM is the official journal of the National Societies from Austria (ÖGLMKC); Belgium (RBSLM); Germany (DGKL); Hungary (MLDT); Ireland (ACBI); Italy (SIBioC); Portugal (SPML); and Slovenia (SZKK); and it is affiliated to AACB (Australia) and SFBC (France).
Topics:
- clinical biochemistry
- clinical genomics and molecular biology
- clinical haematology and coagulation
- clinical immunology and autoimmunity
- clinical microbiology
- drug monitoring and analysis
- evaluation of diagnostic biomarkers
- disease-oriented topics (cardiovascular disease, cancer diagnostics, diabetes)
- new reagents, instrumentation and technologies
- new methodologies
- reference materials and methods
- reference values and decision limits
- quality and safety in laboratory medicine
- translational laboratory medicine
- clinical metrology
Follow @cclm_degruyter on Twitter!