Alexandra Ptakova, Lucie Zimova, Ivan Barvik, Robin S Bon, Viktorie Vlachova
{"title":"溶血磷脂和电压依赖性调控 TRPC5 通道的功能决定因素。","authors":"Alexandra Ptakova, Lucie Zimova, Ivan Barvik, Robin S Bon, Viktorie Vlachova","doi":"10.1007/s00018-024-05417-7","DOIUrl":null,"url":null,"abstract":"<p><p>Lysophosphatidylcholine (LPC) is a bioactive lipid present at high concentrations in inflamed and injured tissues where it contributes to the initiation and maintenance of pain. One of its important molecular effectors is the transient receptor potential canonical 5 (TRPC5), but the explicit mechanism of the activation is unknown. Using electrophysiology, mutagenesis and molecular dynamics simulations, we show that LPC-induced activation of TRPC5 is modulated by xanthine ligands and depolarizing voltage, and involves conserved residues within the lateral fenestration of the pore domain. Replacement of W577 with alanine (W577A) rendered the channel insensitive to strong depolarizing voltage, but LPC still activated this mutant at highly depolarizing potentials. Substitution of G606 located directly opposite position 577 with tryptophan rescued the sensitivity of W577A to depolarization. Molecular simulations showed that depolarization widens the lower gate of the channel and this conformational change is prevented by the W577A mutation or removal of resident lipids. We propose a gating scheme in which depolarizing voltage and lipid-pore helix interactions act together to promote TRPC5 channel opening.</p>","PeriodicalId":10007,"journal":{"name":"Cellular and Molecular Life Sciences","volume":"81 1","pages":"374"},"PeriodicalIF":6.2000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11362415/pdf/","citationCount":"0","resultStr":"{\"title\":\"Functional determinants of lysophospholipid- and voltage-dependent regulation of TRPC5 channel.\",\"authors\":\"Alexandra Ptakova, Lucie Zimova, Ivan Barvik, Robin S Bon, Viktorie Vlachova\",\"doi\":\"10.1007/s00018-024-05417-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Lysophosphatidylcholine (LPC) is a bioactive lipid present at high concentrations in inflamed and injured tissues where it contributes to the initiation and maintenance of pain. One of its important molecular effectors is the transient receptor potential canonical 5 (TRPC5), but the explicit mechanism of the activation is unknown. Using electrophysiology, mutagenesis and molecular dynamics simulations, we show that LPC-induced activation of TRPC5 is modulated by xanthine ligands and depolarizing voltage, and involves conserved residues within the lateral fenestration of the pore domain. Replacement of W577 with alanine (W577A) rendered the channel insensitive to strong depolarizing voltage, but LPC still activated this mutant at highly depolarizing potentials. Substitution of G606 located directly opposite position 577 with tryptophan rescued the sensitivity of W577A to depolarization. Molecular simulations showed that depolarization widens the lower gate of the channel and this conformational change is prevented by the W577A mutation or removal of resident lipids. We propose a gating scheme in which depolarizing voltage and lipid-pore helix interactions act together to promote TRPC5 channel opening.</p>\",\"PeriodicalId\":10007,\"journal\":{\"name\":\"Cellular and Molecular Life Sciences\",\"volume\":\"81 1\",\"pages\":\"374\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11362415/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cellular and Molecular Life Sciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00018-024-05417-7\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular and Molecular Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00018-024-05417-7","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Functional determinants of lysophospholipid- and voltage-dependent regulation of TRPC5 channel.
Lysophosphatidylcholine (LPC) is a bioactive lipid present at high concentrations in inflamed and injured tissues where it contributes to the initiation and maintenance of pain. One of its important molecular effectors is the transient receptor potential canonical 5 (TRPC5), but the explicit mechanism of the activation is unknown. Using electrophysiology, mutagenesis and molecular dynamics simulations, we show that LPC-induced activation of TRPC5 is modulated by xanthine ligands and depolarizing voltage, and involves conserved residues within the lateral fenestration of the pore domain. Replacement of W577 with alanine (W577A) rendered the channel insensitive to strong depolarizing voltage, but LPC still activated this mutant at highly depolarizing potentials. Substitution of G606 located directly opposite position 577 with tryptophan rescued the sensitivity of W577A to depolarization. Molecular simulations showed that depolarization widens the lower gate of the channel and this conformational change is prevented by the W577A mutation or removal of resident lipids. We propose a gating scheme in which depolarizing voltage and lipid-pore helix interactions act together to promote TRPC5 channel opening.
期刊介绍:
Journal Name: Cellular and Molecular Life Sciences (CMLS)
Location: Basel, Switzerland
Focus:
Multidisciplinary journal
Publishes research articles, reviews, multi-author reviews, and visions & reflections articles
Coverage:
Latest aspects of biological and biomedical research
Areas include:
Biochemistry and molecular biology
Cell biology
Molecular and cellular aspects of biomedicine
Neuroscience
Pharmacology
Immunology
Additional Features:
Welcomes comments on any article published in CMLS
Accepts suggestions for topics to be covered