{"title":"患者区域指数:基于门诊大数据的临床专科排名新方法。","authors":"Xiaoling Peng, Moyuan Huang, Xinyang Li, Tianyi Zhou, Guiping Lin, Xiaoguang Wang","doi":"10.1186/s12874-024-02309-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Many existing healthcare ranking systems are notably intricate. The standards for peer review and evaluation often differ across specialties, leading to contradictory results among various ranking systems. There is a significant need for a comprehensible and consistent mode of specialty assessment.</p><p><strong>Methods: </strong>This quantitative study aimed to assess the influence of clinical specialties on the regional distribution of patient origins based on 10,097,795 outpatient records of a large comprehensive hospital in South China. We proposed the patient regional index (PRI), a novel metric to quantify the regional influence of hospital specialties, using the principle of representative points of a statistical distribution. Additionally, a two-dimensional measure was constructed to gauge the significance of hospital specialties by integrating the PRI and outpatient volume.</p><p><strong>Results: </strong>We calculated the PRI for each of the 16 specialties of interest over eight consecutive years. The longitudinal changes in the PRI accurately captured the impact of the 2017 Chinese healthcare reforms and the 2020 COVID-19 pandemic on hospital specialties. At last, the two-dimensional assessment model we devised effectively illustrates the distinct characteristics across hospital specialties.</p><p><strong>Conclusion: </strong>We propose a novel, straightforward, and interpretable index for quantifying the influence of hospital specialties. This index, built on outpatient data, requires only the patients' origin, thereby facilitating its widespread adoption and comparison across specialties of varying backgrounds. This data-driven method offers a patient-centric view of specialty influence, diverging from the traditional reliance on expert opinions. As such, it serves as a valuable augmentation to existing ranking systems.</p>","PeriodicalId":9114,"journal":{"name":"BMC Medical Research Methodology","volume":"24 1","pages":"192"},"PeriodicalIF":3.9000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11365139/pdf/","citationCount":"0","resultStr":"{\"title\":\"Patient regional index: a new way to rank clinical specialties based on outpatient clinics big data.\",\"authors\":\"Xiaoling Peng, Moyuan Huang, Xinyang Li, Tianyi Zhou, Guiping Lin, Xiaoguang Wang\",\"doi\":\"10.1186/s12874-024-02309-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Many existing healthcare ranking systems are notably intricate. The standards for peer review and evaluation often differ across specialties, leading to contradictory results among various ranking systems. There is a significant need for a comprehensible and consistent mode of specialty assessment.</p><p><strong>Methods: </strong>This quantitative study aimed to assess the influence of clinical specialties on the regional distribution of patient origins based on 10,097,795 outpatient records of a large comprehensive hospital in South China. We proposed the patient regional index (PRI), a novel metric to quantify the regional influence of hospital specialties, using the principle of representative points of a statistical distribution. Additionally, a two-dimensional measure was constructed to gauge the significance of hospital specialties by integrating the PRI and outpatient volume.</p><p><strong>Results: </strong>We calculated the PRI for each of the 16 specialties of interest over eight consecutive years. The longitudinal changes in the PRI accurately captured the impact of the 2017 Chinese healthcare reforms and the 2020 COVID-19 pandemic on hospital specialties. At last, the two-dimensional assessment model we devised effectively illustrates the distinct characteristics across hospital specialties.</p><p><strong>Conclusion: </strong>We propose a novel, straightforward, and interpretable index for quantifying the influence of hospital specialties. This index, built on outpatient data, requires only the patients' origin, thereby facilitating its widespread adoption and comparison across specialties of varying backgrounds. This data-driven method offers a patient-centric view of specialty influence, diverging from the traditional reliance on expert opinions. As such, it serves as a valuable augmentation to existing ranking systems.</p>\",\"PeriodicalId\":9114,\"journal\":{\"name\":\"BMC Medical Research Methodology\",\"volume\":\"24 1\",\"pages\":\"192\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11365139/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Medical Research Methodology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12874-024-02309-z\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Medical Research Methodology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12874-024-02309-z","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
Patient regional index: a new way to rank clinical specialties based on outpatient clinics big data.
Background: Many existing healthcare ranking systems are notably intricate. The standards for peer review and evaluation often differ across specialties, leading to contradictory results among various ranking systems. There is a significant need for a comprehensible and consistent mode of specialty assessment.
Methods: This quantitative study aimed to assess the influence of clinical specialties on the regional distribution of patient origins based on 10,097,795 outpatient records of a large comprehensive hospital in South China. We proposed the patient regional index (PRI), a novel metric to quantify the regional influence of hospital specialties, using the principle of representative points of a statistical distribution. Additionally, a two-dimensional measure was constructed to gauge the significance of hospital specialties by integrating the PRI and outpatient volume.
Results: We calculated the PRI for each of the 16 specialties of interest over eight consecutive years. The longitudinal changes in the PRI accurately captured the impact of the 2017 Chinese healthcare reforms and the 2020 COVID-19 pandemic on hospital specialties. At last, the two-dimensional assessment model we devised effectively illustrates the distinct characteristics across hospital specialties.
Conclusion: We propose a novel, straightforward, and interpretable index for quantifying the influence of hospital specialties. This index, built on outpatient data, requires only the patients' origin, thereby facilitating its widespread adoption and comparison across specialties of varying backgrounds. This data-driven method offers a patient-centric view of specialty influence, diverging from the traditional reliance on expert opinions. As such, it serves as a valuable augmentation to existing ranking systems.
期刊介绍:
BMC Medical Research Methodology is an open access journal publishing original peer-reviewed research articles in methodological approaches to healthcare research. Articles on the methodology of epidemiological research, clinical trials and meta-analysis/systematic review are particularly encouraged, as are empirical studies of the associations between choice of methodology and study outcomes. BMC Medical Research Methodology does not aim to publish articles describing scientific methods or techniques: these should be directed to the BMC journal covering the relevant biomedical subject area.