Raissa Ferreira Gutierrez , Heloisa Ciol , Angélica L. Carrillo Barra , Diego Antonio Leonardo , Juliana S. Avaca-Crusca , Otavio H. Thiemann , Nilson Ivo Tonin Zanchin , Ana P. Ulian Araujo
{"title":"确定衣藻核糖体生物发生过程中的角色:保守因子 NIP7","authors":"Raissa Ferreira Gutierrez , Heloisa Ciol , Angélica L. Carrillo Barra , Diego Antonio Leonardo , Juliana S. Avaca-Crusca , Otavio H. Thiemann , Nilson Ivo Tonin Zanchin , Ana P. Ulian Araujo","doi":"10.1016/j.bbapap.2024.141045","DOIUrl":null,"url":null,"abstract":"<div><p>Ribosome biogenesis (RB) is a highly conserved process across eukaryotes that results in the assembly of functional ribosomal subunits. Studies in <em>Saccharomyces cerevisiae</em> and <em>Homo sapiens</em> have identified numerous RB factors (RBFs), including the NIP7 protein, which is involved in late-stage pre-60S ribosomal maturation. NIP7 expression has also been observed in <em>Chlamydomonas reinhardtii</em>, highlighting its evolutionary significance. This study aimed to characterize the function of the NIP7 protein from <em>C. reinhardtii</em> (<em>Cr</em>Nip7) through protein complementation assays and a paromomycin resistance test, assessing its ability to complement the role of NIP7 in yeast. Protein interaction studies were conducted via yeast two-hybrid assay to identify potential protein partners of <em>Cr</em>Nip7. Additionally, rRNA modeling analysis was performed using the predicted structure of <em>Cr</em>Nip7 to investigate its interaction with rRNA. The study revealed that <em>Cr</em>Nip7 can complement the role of NIP7 in yeast, implicating <em>Cr</em>Nip7 in the biogenesis of the 60S ribosomal subunit. Furthermore, two possible partner proteins of CrNip7, UNC-p and G-patch, were identified through yeast two-hybrid assay. The potential of these proteins to interact with CrNip7 was explored through in silico analyses. Furthermore, nucleic acid interaction was also evaluated, indicating the involvement of the N- and C-terminal domains of CrNIP7 in interacting with rRNA. Collectively, our findings provide valuable insights into the RBFs CrNip7, offering novel information for comparative studies on RB among eukaryotic model organisms, shedding light on its evolutionary conservation and functional role across species.</p></div>","PeriodicalId":8760,"journal":{"name":"Biochimica et biophysica acta. Proteins and proteomics","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assigning roles in Chlamydomonas ribosome biogenesis: The conserved factor NIP7\",\"authors\":\"Raissa Ferreira Gutierrez , Heloisa Ciol , Angélica L. Carrillo Barra , Diego Antonio Leonardo , Juliana S. Avaca-Crusca , Otavio H. Thiemann , Nilson Ivo Tonin Zanchin , Ana P. Ulian Araujo\",\"doi\":\"10.1016/j.bbapap.2024.141045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Ribosome biogenesis (RB) is a highly conserved process across eukaryotes that results in the assembly of functional ribosomal subunits. Studies in <em>Saccharomyces cerevisiae</em> and <em>Homo sapiens</em> have identified numerous RB factors (RBFs), including the NIP7 protein, which is involved in late-stage pre-60S ribosomal maturation. NIP7 expression has also been observed in <em>Chlamydomonas reinhardtii</em>, highlighting its evolutionary significance. This study aimed to characterize the function of the NIP7 protein from <em>C. reinhardtii</em> (<em>Cr</em>Nip7) through protein complementation assays and a paromomycin resistance test, assessing its ability to complement the role of NIP7 in yeast. Protein interaction studies were conducted via yeast two-hybrid assay to identify potential protein partners of <em>Cr</em>Nip7. Additionally, rRNA modeling analysis was performed using the predicted structure of <em>Cr</em>Nip7 to investigate its interaction with rRNA. The study revealed that <em>Cr</em>Nip7 can complement the role of NIP7 in yeast, implicating <em>Cr</em>Nip7 in the biogenesis of the 60S ribosomal subunit. Furthermore, two possible partner proteins of CrNip7, UNC-p and G-patch, were identified through yeast two-hybrid assay. The potential of these proteins to interact with CrNip7 was explored through in silico analyses. Furthermore, nucleic acid interaction was also evaluated, indicating the involvement of the N- and C-terminal domains of CrNIP7 in interacting with rRNA. Collectively, our findings provide valuable insights into the RBFs CrNip7, offering novel information for comparative studies on RB among eukaryotic model organisms, shedding light on its evolutionary conservation and functional role across species.</p></div>\",\"PeriodicalId\":8760,\"journal\":{\"name\":\"Biochimica et biophysica acta. Proteins and proteomics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochimica et biophysica acta. Proteins and proteomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1570963924000529\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. Proteins and proteomics","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1570963924000529","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Assigning roles in Chlamydomonas ribosome biogenesis: The conserved factor NIP7
Ribosome biogenesis (RB) is a highly conserved process across eukaryotes that results in the assembly of functional ribosomal subunits. Studies in Saccharomyces cerevisiae and Homo sapiens have identified numerous RB factors (RBFs), including the NIP7 protein, which is involved in late-stage pre-60S ribosomal maturation. NIP7 expression has also been observed in Chlamydomonas reinhardtii, highlighting its evolutionary significance. This study aimed to characterize the function of the NIP7 protein from C. reinhardtii (CrNip7) through protein complementation assays and a paromomycin resistance test, assessing its ability to complement the role of NIP7 in yeast. Protein interaction studies were conducted via yeast two-hybrid assay to identify potential protein partners of CrNip7. Additionally, rRNA modeling analysis was performed using the predicted structure of CrNip7 to investigate its interaction with rRNA. The study revealed that CrNip7 can complement the role of NIP7 in yeast, implicating CrNip7 in the biogenesis of the 60S ribosomal subunit. Furthermore, two possible partner proteins of CrNip7, UNC-p and G-patch, were identified through yeast two-hybrid assay. The potential of these proteins to interact with CrNip7 was explored through in silico analyses. Furthermore, nucleic acid interaction was also evaluated, indicating the involvement of the N- and C-terminal domains of CrNIP7 in interacting with rRNA. Collectively, our findings provide valuable insights into the RBFs CrNip7, offering novel information for comparative studies on RB among eukaryotic model organisms, shedding light on its evolutionary conservation and functional role across species.
期刊介绍:
BBA Proteins and Proteomics covers protein structure conformation and dynamics; protein folding; protein-ligand interactions; enzyme mechanisms, models and kinetics; protein physical properties and spectroscopy; and proteomics and bioinformatics analyses of protein structure, protein function, or protein regulation.