{"title":"潜伏时间记忆的浮现支持小鼠计时行为的表征基础","authors":"Tutku Öztel, Fuat Balcı","doi":"10.1007/s10071-024-01889-z","DOIUrl":null,"url":null,"abstract":"<div><p>Animals can adapt their reward expectancy to changes in delays to reward availability. When temporal relations are altered, associative models of interval timing predict that the original time memory is lost due to the updating of the underlying associative weights, whereas the representational models render the preservation of the original time memory (as previously demonstrated in the extinction of conditioned fear). The current study presents the critical test of these theoretical accounts by training mice with two different intervals in a consecutive fashion (short → long or long → short) and then testing timing behaviors during extinction where neither temporal relation is in effect. Mice that were trained with the long interval first clustered their anticipatory responses around the average of two intervals (indirect higher-order manifestation of two memories in the form of temporal averaging), whereas mice trained with the short interval first clustered their responses either around the short or long interval (direct manifestation of memory representations by their independent indexing). We assert that the original memory representation formed during training with the long interval “metrically affords” the integration of subsequent experiences with a shorter interval, allowing their co-activation during extinction. The original memory representation formed during training with the short interval would not metrically afford such integration and thus result in the formation of a new (mutually exclusive) time memory representation, which does not afford their co-activation during extinction. Our results provide strong support for the representational account of interval timing. We provide a new theoretical account of these findings based on the “metric affordances” of the original memory representation formed during training with the original intervals.</p></div>","PeriodicalId":7879,"journal":{"name":"Animal Cognition","volume":"27 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11362479/pdf/","citationCount":"0","resultStr":"{\"title\":\"Surfacing of Latent Time Memories Supports the Representational Basis of Timing Behavior in Mice\",\"authors\":\"Tutku Öztel, Fuat Balcı\",\"doi\":\"10.1007/s10071-024-01889-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Animals can adapt their reward expectancy to changes in delays to reward availability. When temporal relations are altered, associative models of interval timing predict that the original time memory is lost due to the updating of the underlying associative weights, whereas the representational models render the preservation of the original time memory (as previously demonstrated in the extinction of conditioned fear). The current study presents the critical test of these theoretical accounts by training mice with two different intervals in a consecutive fashion (short → long or long → short) and then testing timing behaviors during extinction where neither temporal relation is in effect. Mice that were trained with the long interval first clustered their anticipatory responses around the average of two intervals (indirect higher-order manifestation of two memories in the form of temporal averaging), whereas mice trained with the short interval first clustered their responses either around the short or long interval (direct manifestation of memory representations by their independent indexing). We assert that the original memory representation formed during training with the long interval “metrically affords” the integration of subsequent experiences with a shorter interval, allowing their co-activation during extinction. The original memory representation formed during training with the short interval would not metrically afford such integration and thus result in the formation of a new (mutually exclusive) time memory representation, which does not afford their co-activation during extinction. Our results provide strong support for the representational account of interval timing. We provide a new theoretical account of these findings based on the “metric affordances” of the original memory representation formed during training with the original intervals.</p></div>\",\"PeriodicalId\":7879,\"journal\":{\"name\":\"Animal Cognition\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11362479/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Animal Cognition\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10071-024-01889-z\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BEHAVIORAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animal Cognition","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10071-024-01889-z","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
Surfacing of Latent Time Memories Supports the Representational Basis of Timing Behavior in Mice
Animals can adapt their reward expectancy to changes in delays to reward availability. When temporal relations are altered, associative models of interval timing predict that the original time memory is lost due to the updating of the underlying associative weights, whereas the representational models render the preservation of the original time memory (as previously demonstrated in the extinction of conditioned fear). The current study presents the critical test of these theoretical accounts by training mice with two different intervals in a consecutive fashion (short → long or long → short) and then testing timing behaviors during extinction where neither temporal relation is in effect. Mice that were trained with the long interval first clustered their anticipatory responses around the average of two intervals (indirect higher-order manifestation of two memories in the form of temporal averaging), whereas mice trained with the short interval first clustered their responses either around the short or long interval (direct manifestation of memory representations by their independent indexing). We assert that the original memory representation formed during training with the long interval “metrically affords” the integration of subsequent experiences with a shorter interval, allowing their co-activation during extinction. The original memory representation formed during training with the short interval would not metrically afford such integration and thus result in the formation of a new (mutually exclusive) time memory representation, which does not afford their co-activation during extinction. Our results provide strong support for the representational account of interval timing. We provide a new theoretical account of these findings based on the “metric affordances” of the original memory representation formed during training with the original intervals.
期刊介绍:
Animal Cognition is an interdisciplinary journal offering current research from many disciplines (ethology, behavioral ecology, animal behavior and learning, cognitive sciences, comparative psychology and evolutionary psychology) on all aspects of animal (and human) cognition in an evolutionary framework.
Animal Cognition publishes original empirical and theoretical work, reviews, methods papers, short communications and correspondence on the mechanisms and evolution of biologically rooted cognitive-intellectual structures.
The journal explores animal time perception and use; causality detection; innate reaction patterns and innate bases of learning; numerical competence and frequency expectancies; symbol use; communication; problem solving, animal thinking and use of tools, and the modularity of the mind.