{"title":"在二维/二维肖特基异质结中构建内置电场,实现高效碱性海水电解","authors":"Hongjun Chen, Liming Deng, Sheng Zhao, Shuyi Liu, Feng Hu, Linlin Li, Jianwei Ren and Shengjie Peng","doi":"10.1039/D4QI01587H","DOIUrl":null,"url":null,"abstract":"<p >Developing efficient and durable hydrogen evolution reaction (HER) electrocatalysts is critical for industrial and sustainable hydrogen production. Herein, a simple co-precipitation strategy is proposed to successfully construct catalysts with a Mott–Schottky heterojunction by coupling a transition-metal phosphate to the surface of stripped MXene thin-layer nanosheets (M<small><sub>3</sub></small>(PO<small><sub>4</sub></small>)<small><sub>2</sub></small>@MXene, M = Co, Ni, and Fe). The Co<small><sub>3</sub></small>(PO<small><sub>4</sub></small>)<small><sub>2</sub></small>@MXene with a unique tightly connected 2D/2D heterostructure and built-in electric field induces directional electron transfer at the interface, regulates the polarized structure of the active sites, and accelerates both mass and electron transport. Consequently, the optimized Co<small><sub>3</sub></small>(PO<small><sub>4</sub></small>)<small><sub>2</sub></small>@MXene demonstrates outstanding HER performance, achieving low overpotentials of 46 and 58.6 mV at 10 mA cm<small><sup>−2</sup></small> in alkaline freshwater and seawater electrolytes, respectively. Moreover, the Co<small><sub>3</sub></small>(PO<small><sub>4</sub></small>)<small><sub>2</sub></small>@MXene heterojunction catalyst maintains stable operation at a high current density of 500 mA cm<small><sup>−2</sup></small> for over 100 h in alkaline seawater electrolytes. More importantly, Co<small><sub>3</sub></small>(PO<small><sub>4</sub></small>)<small><sub>2</sub></small>@MXene can offer a low potential of 1.71 V at 500 mA cm<small><sup>−2</sup></small> with stable operation for 50 h in a flow-type alkaline seawater electrolyser. This study provides a unique heterostructure in an electrocatalyst for an efficient HER and presents its potential application in seawater electrolysis.</p>","PeriodicalId":79,"journal":{"name":"Inorganic Chemistry Frontiers","volume":" 20","pages":" 6909-6918"},"PeriodicalIF":6.4000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Constructing built-in electric fields in 2D/2D Schottky heterojunctions for efficient alkaline seawater electrolysis†\",\"authors\":\"Hongjun Chen, Liming Deng, Sheng Zhao, Shuyi Liu, Feng Hu, Linlin Li, Jianwei Ren and Shengjie Peng\",\"doi\":\"10.1039/D4QI01587H\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Developing efficient and durable hydrogen evolution reaction (HER) electrocatalysts is critical for industrial and sustainable hydrogen production. Herein, a simple co-precipitation strategy is proposed to successfully construct catalysts with a Mott–Schottky heterojunction by coupling a transition-metal phosphate to the surface of stripped MXene thin-layer nanosheets (M<small><sub>3</sub></small>(PO<small><sub>4</sub></small>)<small><sub>2</sub></small>@MXene, M = Co, Ni, and Fe). The Co<small><sub>3</sub></small>(PO<small><sub>4</sub></small>)<small><sub>2</sub></small>@MXene with a unique tightly connected 2D/2D heterostructure and built-in electric field induces directional electron transfer at the interface, regulates the polarized structure of the active sites, and accelerates both mass and electron transport. Consequently, the optimized Co<small><sub>3</sub></small>(PO<small><sub>4</sub></small>)<small><sub>2</sub></small>@MXene demonstrates outstanding HER performance, achieving low overpotentials of 46 and 58.6 mV at 10 mA cm<small><sup>−2</sup></small> in alkaline freshwater and seawater electrolytes, respectively. Moreover, the Co<small><sub>3</sub></small>(PO<small><sub>4</sub></small>)<small><sub>2</sub></small>@MXene heterojunction catalyst maintains stable operation at a high current density of 500 mA cm<small><sup>−2</sup></small> for over 100 h in alkaline seawater electrolytes. More importantly, Co<small><sub>3</sub></small>(PO<small><sub>4</sub></small>)<small><sub>2</sub></small>@MXene can offer a low potential of 1.71 V at 500 mA cm<small><sup>−2</sup></small> with stable operation for 50 h in a flow-type alkaline seawater electrolyser. This study provides a unique heterostructure in an electrocatalyst for an efficient HER and presents its potential application in seawater electrolysis.</p>\",\"PeriodicalId\":79,\"journal\":{\"name\":\"Inorganic Chemistry Frontiers\",\"volume\":\" 20\",\"pages\":\" 6909-6918\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inorganic Chemistry Frontiers\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/qi/d4qi01587h\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry Frontiers","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/qi/d4qi01587h","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
摘要
开发高效持久的氢进化反应(HER)电催化剂对于工业和可持续制氢至关重要。本文提出了一种简单的共沉淀策略,通过在剥离的 MXene 薄层纳米片(M3(PO4)2@MXene,M = Co、Ni 和 Fe)表面耦合过渡金属磷酸盐,成功构建了莫特-肖特基异质结催化剂。Co3(PO4)2@MXene具有独特的紧密连接的2D/2D异质结构和内置电场,可诱导界面上的定向电子转移,调节活性位点的极化结构,并加速质量和电子的传输。因此,经过优化的 Co3(PO4)2@MXene 表现出卓越的 HER 性能,在碱性淡水和海水电解质中,10 mA cm-2 的过电位分别为 46 和 58.6 mV。此外,Co3(PO4)2@MXene 异质结催化剂还能在碱性海水电解质中以 500 mA cm-2 的高电流密度稳定运行 100 小时以上。更重要的是,Co3(PO4)2@MXene 能在 500 mA cm-2 的低电位下提供 1.71 V 的电压,并能在流动型碱性海水电解槽中稳定运行 50 小时。这项研究为高效 HER 提供了一种独特的异质结构电催化剂,在海水电解中具有潜在的应用前景。
Constructing built-in electric fields in 2D/2D Schottky heterojunctions for efficient alkaline seawater electrolysis†
Developing efficient and durable hydrogen evolution reaction (HER) electrocatalysts is critical for industrial and sustainable hydrogen production. Herein, a simple co-precipitation strategy is proposed to successfully construct catalysts with a Mott–Schottky heterojunction by coupling a transition-metal phosphate to the surface of stripped MXene thin-layer nanosheets (M3(PO4)2@MXene, M = Co, Ni, and Fe). The Co3(PO4)2@MXene with a unique tightly connected 2D/2D heterostructure and built-in electric field induces directional electron transfer at the interface, regulates the polarized structure of the active sites, and accelerates both mass and electron transport. Consequently, the optimized Co3(PO4)2@MXene demonstrates outstanding HER performance, achieving low overpotentials of 46 and 58.6 mV at 10 mA cm−2 in alkaline freshwater and seawater electrolytes, respectively. Moreover, the Co3(PO4)2@MXene heterojunction catalyst maintains stable operation at a high current density of 500 mA cm−2 for over 100 h in alkaline seawater electrolytes. More importantly, Co3(PO4)2@MXene can offer a low potential of 1.71 V at 500 mA cm−2 with stable operation for 50 h in a flow-type alkaline seawater electrolyser. This study provides a unique heterostructure in an electrocatalyst for an efficient HER and presents its potential application in seawater electrolysis.