Da-Wei Zhou, Zi-Wen Cai, Han-Jia Ye, De-Chuan Zhan, Ziwei Liu
{"title":"重新审视使用预训练模型的分类增量学习:通用性和适应性是你所需要的一切","authors":"Da-Wei Zhou, Zi-Wen Cai, Han-Jia Ye, De-Chuan Zhan, Ziwei Liu","doi":"10.1007/s11263-024-02218-0","DOIUrl":null,"url":null,"abstract":"<p>Class-incremental learning (CIL) aims to adapt to emerging new classes without forgetting old ones. Traditional CIL models are trained from scratch to continually acquire knowledge as data evolves. Recently, pre-training has achieved substantial progress, making vast pre-trained models (PTMs) accessible for CIL. Contrary to traditional methods, PTMs possess generalizable embeddings, which can be easily transferred for CIL. In this work, we revisit CIL with PTMs and argue that the core factors in CIL are adaptivity for model updating and generalizability for knowledge transferring. (1) We first reveal that frozen PTM can already provide generalizable embeddings for CIL. Surprisingly, a simple baseline (SimpleCIL) which continually sets the classifiers of PTM to prototype features can beat state-of-the-art even without training on the downstream task. (2) Due to the distribution gap between pre-trained and downstream datasets, PTM can be further cultivated with adaptivity via model adaptation. We propose AdaPt and mERge (<span>Aper</span>), which aggregates the embeddings of PTM and adapted models for classifier construction. <span>Aper </span>is a general framework that can be orthogonally combined with any parameter-efficient tuning method, which holds the advantages of PTM’s generalizability and adapted model’s adaptivity. (3) Additionally, considering previous ImageNet-based benchmarks are unsuitable in the era of PTM due to data overlapping, we propose four new benchmarks for assessment, namely ImageNet-A, ObjectNet, OmniBenchmark, and VTAB. Extensive experiments validate the effectiveness of <span>Aper </span>with a unified and concise framework. Code is available at https://github.com/zhoudw-zdw/RevisitingCIL.</p>","PeriodicalId":13752,"journal":{"name":"International Journal of Computer Vision","volume":"20 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Revisiting Class-Incremental Learning with Pre-Trained Models: Generalizability and Adaptivity are All You Need\",\"authors\":\"Da-Wei Zhou, Zi-Wen Cai, Han-Jia Ye, De-Chuan Zhan, Ziwei Liu\",\"doi\":\"10.1007/s11263-024-02218-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Class-incremental learning (CIL) aims to adapt to emerging new classes without forgetting old ones. Traditional CIL models are trained from scratch to continually acquire knowledge as data evolves. Recently, pre-training has achieved substantial progress, making vast pre-trained models (PTMs) accessible for CIL. Contrary to traditional methods, PTMs possess generalizable embeddings, which can be easily transferred for CIL. In this work, we revisit CIL with PTMs and argue that the core factors in CIL are adaptivity for model updating and generalizability for knowledge transferring. (1) We first reveal that frozen PTM can already provide generalizable embeddings for CIL. Surprisingly, a simple baseline (SimpleCIL) which continually sets the classifiers of PTM to prototype features can beat state-of-the-art even without training on the downstream task. (2) Due to the distribution gap between pre-trained and downstream datasets, PTM can be further cultivated with adaptivity via model adaptation. We propose AdaPt and mERge (<span>Aper</span>), which aggregates the embeddings of PTM and adapted models for classifier construction. <span>Aper </span>is a general framework that can be orthogonally combined with any parameter-efficient tuning method, which holds the advantages of PTM’s generalizability and adapted model’s adaptivity. (3) Additionally, considering previous ImageNet-based benchmarks are unsuitable in the era of PTM due to data overlapping, we propose four new benchmarks for assessment, namely ImageNet-A, ObjectNet, OmniBenchmark, and VTAB. Extensive experiments validate the effectiveness of <span>Aper </span>with a unified and concise framework. Code is available at https://github.com/zhoudw-zdw/RevisitingCIL.</p>\",\"PeriodicalId\":13752,\"journal\":{\"name\":\"International Journal of Computer Vision\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":11.6000,\"publicationDate\":\"2024-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computer Vision\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11263-024-02218-0\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11263-024-02218-0","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Revisiting Class-Incremental Learning with Pre-Trained Models: Generalizability and Adaptivity are All You Need
Class-incremental learning (CIL) aims to adapt to emerging new classes without forgetting old ones. Traditional CIL models are trained from scratch to continually acquire knowledge as data evolves. Recently, pre-training has achieved substantial progress, making vast pre-trained models (PTMs) accessible for CIL. Contrary to traditional methods, PTMs possess generalizable embeddings, which can be easily transferred for CIL. In this work, we revisit CIL with PTMs and argue that the core factors in CIL are adaptivity for model updating and generalizability for knowledge transferring. (1) We first reveal that frozen PTM can already provide generalizable embeddings for CIL. Surprisingly, a simple baseline (SimpleCIL) which continually sets the classifiers of PTM to prototype features can beat state-of-the-art even without training on the downstream task. (2) Due to the distribution gap between pre-trained and downstream datasets, PTM can be further cultivated with adaptivity via model adaptation. We propose AdaPt and mERge (Aper), which aggregates the embeddings of PTM and adapted models for classifier construction. Aper is a general framework that can be orthogonally combined with any parameter-efficient tuning method, which holds the advantages of PTM’s generalizability and adapted model’s adaptivity. (3) Additionally, considering previous ImageNet-based benchmarks are unsuitable in the era of PTM due to data overlapping, we propose four new benchmarks for assessment, namely ImageNet-A, ObjectNet, OmniBenchmark, and VTAB. Extensive experiments validate the effectiveness of Aper with a unified and concise framework. Code is available at https://github.com/zhoudw-zdw/RevisitingCIL.
期刊介绍:
The International Journal of Computer Vision (IJCV) serves as a platform for sharing new research findings in the rapidly growing field of computer vision. It publishes 12 issues annually and presents high-quality, original contributions to the science and engineering of computer vision. The journal encompasses various types of articles to cater to different research outputs.
Regular articles, which span up to 25 journal pages, focus on significant technical advancements that are of broad interest to the field. These articles showcase substantial progress in computer vision.
Short articles, limited to 10 pages, offer a swift publication path for novel research outcomes. They provide a quicker means for sharing new findings with the computer vision community.
Survey articles, comprising up to 30 pages, offer critical evaluations of the current state of the art in computer vision or offer tutorial presentations of relevant topics. These articles provide comprehensive and insightful overviews of specific subject areas.
In addition to technical articles, the journal also includes book reviews, position papers, and editorials by prominent scientific figures. These contributions serve to complement the technical content and provide valuable perspectives.
The journal encourages authors to include supplementary material online, such as images, video sequences, data sets, and software. This additional material enhances the understanding and reproducibility of the published research.
Overall, the International Journal of Computer Vision is a comprehensive publication that caters to researchers in this rapidly growing field. It covers a range of article types, offers additional online resources, and facilitates the dissemination of impactful research.