Lucas Kook, Sorawit Saengkyongam, Anton Rask Lundborg, Torsten Hothorn, Jonas Peters
{"title":"基于模型的一般反应类型因果特征选择","authors":"Lucas Kook, Sorawit Saengkyongam, Anton Rask Lundborg, Torsten Hothorn, Jonas Peters","doi":"10.1080/01621459.2024.2395588","DOIUrl":null,"url":null,"abstract":"Discovering causal relationships from observational data is a fundamental yet challenging task. Invariant causal prediction (ICP, Peters et al., 2016) is a method for causal feature selection which...","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Model-based causal feature selection for general response types\",\"authors\":\"Lucas Kook, Sorawit Saengkyongam, Anton Rask Lundborg, Torsten Hothorn, Jonas Peters\",\"doi\":\"10.1080/01621459.2024.2395588\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Discovering causal relationships from observational data is a fundamental yet challenging task. Invariant causal prediction (ICP, Peters et al., 2016) is a method for causal feature selection which...\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/01621459.2024.2395588\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/01621459.2024.2395588","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
摘要
从观测数据中发现因果关系是一项基本而又具有挑战性的任务。不变因果预测(ICP,Peters et al.
Model-based causal feature selection for general response types
Discovering causal relationships from observational data is a fundamental yet challenging task. Invariant causal prediction (ICP, Peters et al., 2016) is a method for causal feature selection which...