硫磺储存仓振动的数值和实验研究

IF 4 3区 工程技术 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
A. Gholami, S. F. Hosseini, Kamel Milani Shirvan, Sadiq M. Sait, R. Ellahi
{"title":"硫磺储存仓振动的数值和实验研究","authors":"A. Gholami, S. F. Hosseini, Kamel Milani Shirvan, Sadiq M. Sait, R. Ellahi","doi":"10.1108/hff-06-2024-0444","DOIUrl":null,"url":null,"abstract":"<h3>Purpose</h3>\n<p>Due to the abundant use of granular materials in chemical industries, it is inevitable to store raw materials and products in bulk in silos. For this reason, much research has been carried out in the field of construction, operation and maintenance of silos. One of the important issues that must be investigated in silos is the behavior of their structure when the materials inside them are unloaded. Structural vibrations and the creation of normal noise usually discharge the granular of material from the silo. Both of phenomena are undesirable due to the problems they can cause to the structure and its surroundings. According to the said issues, this paper aims to investigate the vibration problem of the sulfur storage silo of the first refinery during discharge with the help of measuring experimental vibration data and simulating the silo model.</p><!--/ Abstract__block -->\n<h3>Design/methodology/approach</h3>\n<p>In the experimental investigation, the main cause of the vibration of the 400-ton silo in the refinery is used. The mass asymmetry phenomenon when the silo is filled is also considered. The experimental results are authenticated by software analysis too.</p><!--/ Abstract__block -->\n<h3>Findings</h3>\n<p>The results showed that the natural frequency of the ninth mode is almost equal to the natural frequency of sulfur discharge from the silos and has the largest shape change in the structure and vibration range. It is also concluded that the larger sulfur silo (400 tons) should be prioritized over the smaller sulfur silo (200 tons) in the emptying program, and the 400 tons silo should never be emptied even through the 200 tons silo is empty.</p><!--/ Abstract__block -->\n<h3>Originality/value</h3>\n<p>An attempt is made to investigate the issue of vibration in sulfur storage silos in the first refinery of South Pars in the form of experimental investigation and modal analysis.</p><!--/ Abstract__block -->","PeriodicalId":14263,"journal":{"name":"International Journal of Numerical Methods for Heat & Fluid Flow","volume":"8 1","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical and experimental investigation of silo vibration of sulfur storage\",\"authors\":\"A. Gholami, S. F. Hosseini, Kamel Milani Shirvan, Sadiq M. Sait, R. Ellahi\",\"doi\":\"10.1108/hff-06-2024-0444\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Purpose</h3>\\n<p>Due to the abundant use of granular materials in chemical industries, it is inevitable to store raw materials and products in bulk in silos. For this reason, much research has been carried out in the field of construction, operation and maintenance of silos. One of the important issues that must be investigated in silos is the behavior of their structure when the materials inside them are unloaded. Structural vibrations and the creation of normal noise usually discharge the granular of material from the silo. Both of phenomena are undesirable due to the problems they can cause to the structure and its surroundings. According to the said issues, this paper aims to investigate the vibration problem of the sulfur storage silo of the first refinery during discharge with the help of measuring experimental vibration data and simulating the silo model.</p><!--/ Abstract__block -->\\n<h3>Design/methodology/approach</h3>\\n<p>In the experimental investigation, the main cause of the vibration of the 400-ton silo in the refinery is used. The mass asymmetry phenomenon when the silo is filled is also considered. The experimental results are authenticated by software analysis too.</p><!--/ Abstract__block -->\\n<h3>Findings</h3>\\n<p>The results showed that the natural frequency of the ninth mode is almost equal to the natural frequency of sulfur discharge from the silos and has the largest shape change in the structure and vibration range. It is also concluded that the larger sulfur silo (400 tons) should be prioritized over the smaller sulfur silo (200 tons) in the emptying program, and the 400 tons silo should never be emptied even through the 200 tons silo is empty.</p><!--/ Abstract__block -->\\n<h3>Originality/value</h3>\\n<p>An attempt is made to investigate the issue of vibration in sulfur storage silos in the first refinery of South Pars in the form of experimental investigation and modal analysis.</p><!--/ Abstract__block -->\",\"PeriodicalId\":14263,\"journal\":{\"name\":\"International Journal of Numerical Methods for Heat & Fluid Flow\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Numerical Methods for Heat & Fluid Flow\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1108/hff-06-2024-0444\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Numerical Methods for Heat & Fluid Flow","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1108/hff-06-2024-0444","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

目的由于化工行业大量使用颗粒状材料,因此不可避免地要用筒仓储存散装原料和产品。因此,人们对筒仓的建造、运行和维护进行了大量研究。筒仓必须研究的一个重要问题是筒仓内物料卸载时的结构行为。结构振动和正常噪音通常会将颗粒状材料从筒仓中卸下。这两种现象都是不可取的,因为它们会对结构及其周围环境造成问题。根据上述问题,本文旨在通过测量实验振动数据和模拟筒仓模型,研究第一炼油厂硫磺储存筒仓在卸料过程中的振动问题。同时还考虑了筒仓填充时的质量不对称现象。结果表明,第九模态的固有频率几乎等于筒仓排硫的固有频率,并且在结构和振动范围内具有最大的形状变化。还得出结论,在清空计划中,较大的硫磺筒仓(400 吨)应优先于较小的硫磺筒仓(200 吨),即使 200 吨的筒仓已空,也不应清空 400 吨的筒仓。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical and experimental investigation of silo vibration of sulfur storage

Purpose

Due to the abundant use of granular materials in chemical industries, it is inevitable to store raw materials and products in bulk in silos. For this reason, much research has been carried out in the field of construction, operation and maintenance of silos. One of the important issues that must be investigated in silos is the behavior of their structure when the materials inside them are unloaded. Structural vibrations and the creation of normal noise usually discharge the granular of material from the silo. Both of phenomena are undesirable due to the problems they can cause to the structure and its surroundings. According to the said issues, this paper aims to investigate the vibration problem of the sulfur storage silo of the first refinery during discharge with the help of measuring experimental vibration data and simulating the silo model.

Design/methodology/approach

In the experimental investigation, the main cause of the vibration of the 400-ton silo in the refinery is used. The mass asymmetry phenomenon when the silo is filled is also considered. The experimental results are authenticated by software analysis too.

Findings

The results showed that the natural frequency of the ninth mode is almost equal to the natural frequency of sulfur discharge from the silos and has the largest shape change in the structure and vibration range. It is also concluded that the larger sulfur silo (400 tons) should be prioritized over the smaller sulfur silo (200 tons) in the emptying program, and the 400 tons silo should never be emptied even through the 200 tons silo is empty.

Originality/value

An attempt is made to investigate the issue of vibration in sulfur storage silos in the first refinery of South Pars in the form of experimental investigation and modal analysis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.50
自引率
11.90%
发文量
100
审稿时长
6-12 weeks
期刊介绍: The main objective of this international journal is to provide applied mathematicians, engineers and scientists engaged in computer-aided design and research in computational heat transfer and fluid dynamics, whether in academic institutions of industry, with timely and accessible information on the development, refinement and application of computer-based numerical techniques for solving problems in heat and fluid flow. - See more at: http://emeraldgrouppublishing.com/products/journals/journals.htm?id=hff#sthash.Kf80GRt8.dpuf
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信