{"title":"Bandersnatch:在 BLS12-381 标量场上构建的快速椭圆曲线","authors":"Simon Masson, Antonio Sanso, Zhenfei Zhang","doi":"10.1007/s10623-024-01472-0","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we introduce Bandersnatch, a new elliptic curve built over the BLS12-381 scalar field. The curve is equipped with an efficient endomorphism, allowing a fast scalar multiplication algorithm. Our benchmark shows that the multiplication is 42% faster, 21% reduction in terms of circuit size in the form of rank 1 constraint systems (R1CS), and 10% reduction in terms of Plonk circuit, compared to another curve, called Jubjub, having similar properties. Many zero-knowledge proof systems that rely on the Jubjub curve can benefit from our result.\n</p>","PeriodicalId":11130,"journal":{"name":"Designs, Codes and Cryptography","volume":"47 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bandersnatch: a fast elliptic curve built over the BLS12-381 scalar field\",\"authors\":\"Simon Masson, Antonio Sanso, Zhenfei Zhang\",\"doi\":\"10.1007/s10623-024-01472-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we introduce Bandersnatch, a new elliptic curve built over the BLS12-381 scalar field. The curve is equipped with an efficient endomorphism, allowing a fast scalar multiplication algorithm. Our benchmark shows that the multiplication is 42% faster, 21% reduction in terms of circuit size in the form of rank 1 constraint systems (R1CS), and 10% reduction in terms of Plonk circuit, compared to another curve, called Jubjub, having similar properties. Many zero-knowledge proof systems that rely on the Jubjub curve can benefit from our result.\\n</p>\",\"PeriodicalId\":11130,\"journal\":{\"name\":\"Designs, Codes and Cryptography\",\"volume\":\"47 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Designs, Codes and Cryptography\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10623-024-01472-0\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Designs, Codes and Cryptography","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10623-024-01472-0","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Bandersnatch: a fast elliptic curve built over the BLS12-381 scalar field
In this paper, we introduce Bandersnatch, a new elliptic curve built over the BLS12-381 scalar field. The curve is equipped with an efficient endomorphism, allowing a fast scalar multiplication algorithm. Our benchmark shows that the multiplication is 42% faster, 21% reduction in terms of circuit size in the form of rank 1 constraint systems (R1CS), and 10% reduction in terms of Plonk circuit, compared to another curve, called Jubjub, having similar properties. Many zero-knowledge proof systems that rely on the Jubjub curve can benefit from our result.
期刊介绍:
Designs, Codes and Cryptography is an archival peer-reviewed technical journal publishing original research papers in the designated areas. There is a great deal of activity in design theory, coding theory and cryptography, including a substantial amount of research which brings together more than one of the subjects. While many journals exist for each of the individual areas, few encourage the interaction of the disciplines.
The journal was founded to meet the needs of mathematicians, engineers and computer scientists working in these areas, whose interests extend beyond the bounds of any one of the individual disciplines. The journal provides a forum for high quality research in its three areas, with papers touching more than one of the areas especially welcome.
The journal also considers high quality submissions in the closely related areas of finite fields and finite geometries, which provide important tools for both the construction and the actual application of designs, codes and cryptographic systems. In particular, it includes (mostly theoretical) papers on computational aspects of finite fields. It also considers topics in sequence design, which frequently admit equivalent formulations in the journal’s main areas.
Designs, Codes and Cryptography is mathematically oriented, emphasizing the algebraic and geometric aspects of the areas it covers. The journal considers high quality papers of both a theoretical and a practical nature, provided they contain a substantial amount of mathematics.