{"title":"基于刚度分离法的大跨度钢桁梁桥局部模型损伤识别","authors":"Feng Xiao, Yuxue Mao, Geng Tian, Gang S. Chen","doi":"10.1155/2024/5530300","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Damage detection in bridge structures has always been challenging, particularly for long-span bridges with complex structural forms. In this study, a partial-model-based damage detection method was proposed for the damage identification of long-span steel truss bridges. The proposed method employs partial models to estimate the parameters using the stiffness separation method. This approach obviates the need to construct complete stiffness information for the structure. In contrast, it depends solely on the arrangement of the structural members and material information in the recognized area. This technique can effectively circumvent the construction of an overall structural model and reduce the complexity of damage identification in large structures. A full-scale long-span steel truss bridge in service was used to illustrate the feasibility of the proposed method. The locations of the three partial models were considered in the model analysis, and the parameter estimation efficiency of the Nelder–Mead simplex and quasi-Newton algorithms were compared.</p>\n </div>","PeriodicalId":49471,"journal":{"name":"Structural Control & Health Monitoring","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/5530300","citationCount":"0","resultStr":"{\"title\":\"Partial-Model-Based Damage Identification of Long-Span Steel Truss Bridge Based on Stiffness Separation Method\",\"authors\":\"Feng Xiao, Yuxue Mao, Geng Tian, Gang S. Chen\",\"doi\":\"10.1155/2024/5530300\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>Damage detection in bridge structures has always been challenging, particularly for long-span bridges with complex structural forms. In this study, a partial-model-based damage detection method was proposed for the damage identification of long-span steel truss bridges. The proposed method employs partial models to estimate the parameters using the stiffness separation method. This approach obviates the need to construct complete stiffness information for the structure. In contrast, it depends solely on the arrangement of the structural members and material information in the recognized area. This technique can effectively circumvent the construction of an overall structural model and reduce the complexity of damage identification in large structures. A full-scale long-span steel truss bridge in service was used to illustrate the feasibility of the proposed method. The locations of the three partial models were considered in the model analysis, and the parameter estimation efficiency of the Nelder–Mead simplex and quasi-Newton algorithms were compared.</p>\\n </div>\",\"PeriodicalId\":49471,\"journal\":{\"name\":\"Structural Control & Health Monitoring\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/5530300\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structural Control & Health Monitoring\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/2024/5530300\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Control & Health Monitoring","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/5530300","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Partial-Model-Based Damage Identification of Long-Span Steel Truss Bridge Based on Stiffness Separation Method
Damage detection in bridge structures has always been challenging, particularly for long-span bridges with complex structural forms. In this study, a partial-model-based damage detection method was proposed for the damage identification of long-span steel truss bridges. The proposed method employs partial models to estimate the parameters using the stiffness separation method. This approach obviates the need to construct complete stiffness information for the structure. In contrast, it depends solely on the arrangement of the structural members and material information in the recognized area. This technique can effectively circumvent the construction of an overall structural model and reduce the complexity of damage identification in large structures. A full-scale long-span steel truss bridge in service was used to illustrate the feasibility of the proposed method. The locations of the three partial models were considered in the model analysis, and the parameter estimation efficiency of the Nelder–Mead simplex and quasi-Newton algorithms were compared.
期刊介绍:
The Journal Structural Control and Health Monitoring encompasses all theoretical and technological aspects of structural control, structural health monitoring theory and smart materials and structures. The journal focuses on aerospace, civil, infrastructure and mechanical engineering applications.
Original contributions based on analytical, computational and experimental methods are solicited in three main areas: monitoring, control, and smart materials and structures, covering subjects such as system identification, health monitoring, health diagnostics, multi-functional materials, signal processing, sensor technology, passive, active and semi active control schemes and implementations, shape memory alloys, piezoelectrics and mechatronics.
Also of interest are actuator design, dynamic systems, dynamic stability, artificial intelligence tools, data acquisition, wireless communications, measurements, MEMS/NEMS sensors for local damage detection, optical fibre sensors for health monitoring, remote control of monitoring systems, sensor-logger combinations for mobile applications, corrosion sensors, scour indicators and experimental techniques.