Sophia Hernandez, Lucia A. Hindorff, Joannella Morales, Erin M. Ramos, Teri A. Manolio
{"title":"九个生物地理群体的药物基因变异模式","authors":"Sophia Hernandez, Lucia A. Hindorff, Joannella Morales, Erin M. Ramos, Teri A. Manolio","doi":"10.1111/cts.70017","DOIUrl":null,"url":null,"abstract":"<p>Frequencies of pharmacogenetic (PGx) variants are known to differ substantially across populations but much of the available PGx literature focuses on one or a few population groups, often defined in nonstandardized ways, or on a specific gene or variant. Guidelines produced by the Clinical Pharmacogenetic Implementation Consortium (CPIC) provide consistent methods of literature extraction, curation, and reporting, including comprehensive curation of allele frequency data across nine defined “biogeographic groups” from the PGx literature. We extracted data from 23 CPIC guidelines encompassing 19 genes to compare the sizes of the populations from each group and allele frequencies of altered function alleles across groups. The European group was the largest in the curated literature for 16 of the 19 genes, while the American and Oceanian groups were the smallest. Nearly 200 alleles were detected in nonreference groups that were not reported in the largest (reference) group. The genes <i>CYP2B6</i> and <i>CYP2C9</i> were <i>more</i> likely to have higher frequencies of altered function alleles in nonreference groups compared to the reference group, while the genes <i>CYP4F2</i>, <i>DPYD</i>, <i>SLCO1B1</i>, and <i>UGT1A1</i> were <i>less</i> likely to have higher frequencies in nonreference groups. PGx allele frequencies and function differ substantially across nine biogeographic groups, all but two of which are underrepresented in available PGx data. Awareness of these differences and increased efforts to characterize the breadth of global PGx variation are needed to ensure that implementation of PGx-guided drug selection does not further widen existing health disparities among populations currently underrepresented in PGx data.</p>","PeriodicalId":50610,"journal":{"name":"Cts-Clinical and Translational Science","volume":"17 9","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/cts.70017","citationCount":"0","resultStr":"{\"title\":\"Patterns of pharmacogenetic variation in nine biogeographic groups\",\"authors\":\"Sophia Hernandez, Lucia A. Hindorff, Joannella Morales, Erin M. Ramos, Teri A. Manolio\",\"doi\":\"10.1111/cts.70017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Frequencies of pharmacogenetic (PGx) variants are known to differ substantially across populations but much of the available PGx literature focuses on one or a few population groups, often defined in nonstandardized ways, or on a specific gene or variant. Guidelines produced by the Clinical Pharmacogenetic Implementation Consortium (CPIC) provide consistent methods of literature extraction, curation, and reporting, including comprehensive curation of allele frequency data across nine defined “biogeographic groups” from the PGx literature. We extracted data from 23 CPIC guidelines encompassing 19 genes to compare the sizes of the populations from each group and allele frequencies of altered function alleles across groups. The European group was the largest in the curated literature for 16 of the 19 genes, while the American and Oceanian groups were the smallest. Nearly 200 alleles were detected in nonreference groups that were not reported in the largest (reference) group. The genes <i>CYP2B6</i> and <i>CYP2C9</i> were <i>more</i> likely to have higher frequencies of altered function alleles in nonreference groups compared to the reference group, while the genes <i>CYP4F2</i>, <i>DPYD</i>, <i>SLCO1B1</i>, and <i>UGT1A1</i> were <i>less</i> likely to have higher frequencies in nonreference groups. PGx allele frequencies and function differ substantially across nine biogeographic groups, all but two of which are underrepresented in available PGx data. Awareness of these differences and increased efforts to characterize the breadth of global PGx variation are needed to ensure that implementation of PGx-guided drug selection does not further widen existing health disparities among populations currently underrepresented in PGx data.</p>\",\"PeriodicalId\":50610,\"journal\":{\"name\":\"Cts-Clinical and Translational Science\",\"volume\":\"17 9\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/cts.70017\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cts-Clinical and Translational Science\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/cts.70017\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cts-Clinical and Translational Science","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cts.70017","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Patterns of pharmacogenetic variation in nine biogeographic groups
Frequencies of pharmacogenetic (PGx) variants are known to differ substantially across populations but much of the available PGx literature focuses on one or a few population groups, often defined in nonstandardized ways, or on a specific gene or variant. Guidelines produced by the Clinical Pharmacogenetic Implementation Consortium (CPIC) provide consistent methods of literature extraction, curation, and reporting, including comprehensive curation of allele frequency data across nine defined “biogeographic groups” from the PGx literature. We extracted data from 23 CPIC guidelines encompassing 19 genes to compare the sizes of the populations from each group and allele frequencies of altered function alleles across groups. The European group was the largest in the curated literature for 16 of the 19 genes, while the American and Oceanian groups were the smallest. Nearly 200 alleles were detected in nonreference groups that were not reported in the largest (reference) group. The genes CYP2B6 and CYP2C9 were more likely to have higher frequencies of altered function alleles in nonreference groups compared to the reference group, while the genes CYP4F2, DPYD, SLCO1B1, and UGT1A1 were less likely to have higher frequencies in nonreference groups. PGx allele frequencies and function differ substantially across nine biogeographic groups, all but two of which are underrepresented in available PGx data. Awareness of these differences and increased efforts to characterize the breadth of global PGx variation are needed to ensure that implementation of PGx-guided drug selection does not further widen existing health disparities among populations currently underrepresented in PGx data.
期刊介绍:
Clinical and Translational Science (CTS), an official journal of the American Society for Clinical Pharmacology and Therapeutics, highlights original translational medicine research that helps bridge laboratory discoveries with the diagnosis and treatment of human disease. Translational medicine is a multi-faceted discipline with a focus on translational therapeutics. In a broad sense, translational medicine bridges across the discovery, development, regulation, and utilization spectrum. Research may appear as Full Articles, Brief Reports, Commentaries, Phase Forwards (clinical trials), Reviews, or Tutorials. CTS also includes invited didactic content that covers the connections between clinical pharmacology and translational medicine. Best-in-class methodologies and best practices are also welcomed as Tutorials. These additional features provide context for research articles and facilitate understanding for a wide array of individuals interested in clinical and translational science. CTS welcomes high quality, scientifically sound, original manuscripts focused on clinical pharmacology and translational science, including animal, in vitro, in silico, and clinical studies supporting the breadth of drug discovery, development, regulation and clinical use of both traditional drugs and innovative modalities.