Deliang Yu , Shaochong Liu , Yaqi Yu , Yanhao Wang , Lianzhen Li , Willie J.G.M. Peijnenburg , Yufeng Yuan , Xiao Peng
{"title":"转录组分析揭示了聚氯乙烯微塑料和镉对贻贝的交互影响:对非编码 RNA 反应和环境影响的见解","authors":"Deliang Yu , Shaochong Liu , Yaqi Yu , Yanhao Wang , Lianzhen Li , Willie J.G.M. Peijnenburg , Yufeng Yuan , Xiao Peng","doi":"10.1016/j.aquatox.2024.107062","DOIUrl":null,"url":null,"abstract":"<div><p>Despite increasing concerns regarding the interactions of microplastic and heavy metal pollution, there is limited knowledge on the molecular responses of marine organisms to these stressors. In this study, we used whole-transcriptome sequencing to investigate the molecular responses of the ecologically and economically important bivalve <em>Mytilus galloprovincialis</em> to individual and combined exposures of environmentally relevant concentrations of PVC microplastics and cadmium (Cd). Our results revealed distinct transcriptional changes in <em>M. galloprovincialis</em>, with significant overlap in the differentially expressed genes between the individual and combined exposure groups. Genes involved in cellular senescence, oxidative stress, and galactose metabolism were differentially expressed. Additionally, key signaling pathways related to apoptosis and drug metabolism were significantly modulated. Notably, the interaction of PVC microplastics and Cd resulted in differential expression of genes involved in drug metabolism and longevity regulating compared to single exposures. This suggests that the interaction between these two stressors may have amplified effects on mussel health. Overall, this comprehensive transcriptomic analysis provides valuable insights into the adaptive and detrimental responses of <em>M. galloprovincialis</em> to PVC microplastics and Cd in the environment.</p></div>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transcriptomic analysis reveals interactive effects of polyvinyl chloride microplastics and cadmium on Mytilus galloprovincialis: Insights into non-coding RNA responses and environmental implications\",\"authors\":\"Deliang Yu , Shaochong Liu , Yaqi Yu , Yanhao Wang , Lianzhen Li , Willie J.G.M. Peijnenburg , Yufeng Yuan , Xiao Peng\",\"doi\":\"10.1016/j.aquatox.2024.107062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Despite increasing concerns regarding the interactions of microplastic and heavy metal pollution, there is limited knowledge on the molecular responses of marine organisms to these stressors. In this study, we used whole-transcriptome sequencing to investigate the molecular responses of the ecologically and economically important bivalve <em>Mytilus galloprovincialis</em> to individual and combined exposures of environmentally relevant concentrations of PVC microplastics and cadmium (Cd). Our results revealed distinct transcriptional changes in <em>M. galloprovincialis</em>, with significant overlap in the differentially expressed genes between the individual and combined exposure groups. Genes involved in cellular senescence, oxidative stress, and galactose metabolism were differentially expressed. Additionally, key signaling pathways related to apoptosis and drug metabolism were significantly modulated. Notably, the interaction of PVC microplastics and Cd resulted in differential expression of genes involved in drug metabolism and longevity regulating compared to single exposures. This suggests that the interaction between these two stressors may have amplified effects on mussel health. Overall, this comprehensive transcriptomic analysis provides valuable insights into the adaptive and detrimental responses of <em>M. galloprovincialis</em> to PVC microplastics and Cd in the environment.</p></div>\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166445X24002327\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166445X24002327","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Transcriptomic analysis reveals interactive effects of polyvinyl chloride microplastics and cadmium on Mytilus galloprovincialis: Insights into non-coding RNA responses and environmental implications
Despite increasing concerns regarding the interactions of microplastic and heavy metal pollution, there is limited knowledge on the molecular responses of marine organisms to these stressors. In this study, we used whole-transcriptome sequencing to investigate the molecular responses of the ecologically and economically important bivalve Mytilus galloprovincialis to individual and combined exposures of environmentally relevant concentrations of PVC microplastics and cadmium (Cd). Our results revealed distinct transcriptional changes in M. galloprovincialis, with significant overlap in the differentially expressed genes between the individual and combined exposure groups. Genes involved in cellular senescence, oxidative stress, and galactose metabolism were differentially expressed. Additionally, key signaling pathways related to apoptosis and drug metabolism were significantly modulated. Notably, the interaction of PVC microplastics and Cd resulted in differential expression of genes involved in drug metabolism and longevity regulating compared to single exposures. This suggests that the interaction between these two stressors may have amplified effects on mussel health. Overall, this comprehensive transcriptomic analysis provides valuable insights into the adaptive and detrimental responses of M. galloprovincialis to PVC microplastics and Cd in the environment.
期刊介绍:
ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.