{"title":"一类具有时变延迟的分数阶非线性反应-扩散系统的稳定:事件触发边界控制方法","authors":"Ailiang Zhao , Junmin Li , Aili Fan","doi":"10.1016/j.matcom.2024.08.026","DOIUrl":null,"url":null,"abstract":"<div><p>Based on the hybrid event-triggered mechanism (HETM), the boundary stabilization issue for fractional-order nonlinear reaction–diffusion systems (FNRDSs) with time-varying delay is studied by using two kinds of measurements. First, when the system state is measurable, a event-triggered feedback controller (ETFC) is designed directly based on the average measured output. Secondly, for the case that the state is unmeasurable, an event-triggered feedback controller based on observer framework is constructed through the boundary point measurement information. Utilizing the Lyapunov method and Wirtinger’s inequality, sufficient conditions for the asymptotic stability of the system are given in the form of linear matrix inequalities (LMIs), respectively, in which the Razumikhin theorem is used to deal with time-varying delay. Meanwhile, it is proved that Zeno behavior can be excluded by the designed HETM. Finally, numerical simulations demonstrate the validity and feasibility of the proposed control scheme.</p></div>","PeriodicalId":49856,"journal":{"name":"Mathematics and Computers in Simulation","volume":"228 ","pages":"Pages 23-38"},"PeriodicalIF":4.4000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stabilization for a class of fractional-order nonlinear reaction–diffusion systems with time-varying delay: Event-triggered boundary control approach\",\"authors\":\"Ailiang Zhao , Junmin Li , Aili Fan\",\"doi\":\"10.1016/j.matcom.2024.08.026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Based on the hybrid event-triggered mechanism (HETM), the boundary stabilization issue for fractional-order nonlinear reaction–diffusion systems (FNRDSs) with time-varying delay is studied by using two kinds of measurements. First, when the system state is measurable, a event-triggered feedback controller (ETFC) is designed directly based on the average measured output. Secondly, for the case that the state is unmeasurable, an event-triggered feedback controller based on observer framework is constructed through the boundary point measurement information. Utilizing the Lyapunov method and Wirtinger’s inequality, sufficient conditions for the asymptotic stability of the system are given in the form of linear matrix inequalities (LMIs), respectively, in which the Razumikhin theorem is used to deal with time-varying delay. Meanwhile, it is proved that Zeno behavior can be excluded by the designed HETM. Finally, numerical simulations demonstrate the validity and feasibility of the proposed control scheme.</p></div>\",\"PeriodicalId\":49856,\"journal\":{\"name\":\"Mathematics and Computers in Simulation\",\"volume\":\"228 \",\"pages\":\"Pages 23-38\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics and Computers in Simulation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378475424003367\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics and Computers in Simulation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378475424003367","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Stabilization for a class of fractional-order nonlinear reaction–diffusion systems with time-varying delay: Event-triggered boundary control approach
Based on the hybrid event-triggered mechanism (HETM), the boundary stabilization issue for fractional-order nonlinear reaction–diffusion systems (FNRDSs) with time-varying delay is studied by using two kinds of measurements. First, when the system state is measurable, a event-triggered feedback controller (ETFC) is designed directly based on the average measured output. Secondly, for the case that the state is unmeasurable, an event-triggered feedback controller based on observer framework is constructed through the boundary point measurement information. Utilizing the Lyapunov method and Wirtinger’s inequality, sufficient conditions for the asymptotic stability of the system are given in the form of linear matrix inequalities (LMIs), respectively, in which the Razumikhin theorem is used to deal with time-varying delay. Meanwhile, it is proved that Zeno behavior can be excluded by the designed HETM. Finally, numerical simulations demonstrate the validity and feasibility of the proposed control scheme.
期刊介绍:
The aim of the journal is to provide an international forum for the dissemination of up-to-date information in the fields of the mathematics and computers, in particular (but not exclusively) as they apply to the dynamics of systems, their simulation and scientific computation in general. Published material ranges from short, concise research papers to more general tutorial articles.
Mathematics and Computers in Simulation, published monthly, is the official organ of IMACS, the International Association for Mathematics and Computers in Simulation (Formerly AICA). This Association, founded in 1955 and legally incorporated in 1956 is a member of FIACC (the Five International Associations Coordinating Committee), together with IFIP, IFAV, IFORS and IMEKO.
Topics covered by the journal include mathematical tools in:
•The foundations of systems modelling
•Numerical analysis and the development of algorithms for simulation
They also include considerations about computer hardware for simulation and about special software and compilers.
The journal also publishes articles concerned with specific applications of modelling and simulation in science and engineering, with relevant applied mathematics, the general philosophy of systems simulation, and their impact on disciplinary and interdisciplinary research.
The journal includes a Book Review section -- and a "News on IMACS" section that contains a Calendar of future Conferences/Events and other information about the Association.