{"title":"和基本均衡博弈的直径","authors":"Aida Abiad , Carme Àlvarez , Arnau Messegué","doi":"10.1016/j.tcs.2024.114807","DOIUrl":null,"url":null,"abstract":"<div><p>We study the sum basic network creation game introduced in 2010 by Alon, Demaine, Hajiaghai and Leighton. In this game, an undirected and unweighted graph <em>G</em> is said to be a <em>sum basic equilibrium</em> if and only if, for every edge <em>uv</em> and any vertex <span><math><msup><mrow><mi>v</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> in <em>G</em>, swapping edge <em>uv</em> with edge <span><math><mi>u</mi><msup><mrow><mi>v</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> does not decrease the total sum of the distances from <em>u</em> to all the other vertices. This concept lies at the heart of the network creation games, where the central problem is to understand the structure of the resulting equilibrium graphs, and in particular, how well they globally minimize the diameter. In this sense, in 2013 Alon et al. showed an upper bound of <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>O</mi><mo>(</mo><msqrt><mrow><mi>log</mi><mo></mo><mi>n</mi></mrow></msqrt><mo>)</mo></mrow></msup></math></span> on the diameter of sum basic equilibria, and they also proved that if a sum basic equilibrium graph is a tree, then it has diameter at most 2. In this paper, we prove that the upper bound of 2 also holds for bipartite graphs and even for some non-bipartite classes like block graphs and cactus graphs.</p></div>","PeriodicalId":49438,"journal":{"name":"Theoretical Computer Science","volume":"1018 ","pages":"Article 114807"},"PeriodicalIF":0.9000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0304397524004249/pdfft?md5=ab3c3a76dbdf1ff573755d82085be616&pid=1-s2.0-S0304397524004249-main.pdf","citationCount":"0","resultStr":"{\"title\":\"The diameter of sum basic equilibria games\",\"authors\":\"Aida Abiad , Carme Àlvarez , Arnau Messegué\",\"doi\":\"10.1016/j.tcs.2024.114807\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study the sum basic network creation game introduced in 2010 by Alon, Demaine, Hajiaghai and Leighton. In this game, an undirected and unweighted graph <em>G</em> is said to be a <em>sum basic equilibrium</em> if and only if, for every edge <em>uv</em> and any vertex <span><math><msup><mrow><mi>v</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> in <em>G</em>, swapping edge <em>uv</em> with edge <span><math><mi>u</mi><msup><mrow><mi>v</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> does not decrease the total sum of the distances from <em>u</em> to all the other vertices. This concept lies at the heart of the network creation games, where the central problem is to understand the structure of the resulting equilibrium graphs, and in particular, how well they globally minimize the diameter. In this sense, in 2013 Alon et al. showed an upper bound of <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>O</mi><mo>(</mo><msqrt><mrow><mi>log</mi><mo></mo><mi>n</mi></mrow></msqrt><mo>)</mo></mrow></msup></math></span> on the diameter of sum basic equilibria, and they also proved that if a sum basic equilibrium graph is a tree, then it has diameter at most 2. In this paper, we prove that the upper bound of 2 also holds for bipartite graphs and even for some non-bipartite classes like block graphs and cactus graphs.</p></div>\",\"PeriodicalId\":49438,\"journal\":{\"name\":\"Theoretical Computer Science\",\"volume\":\"1018 \",\"pages\":\"Article 114807\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0304397524004249/pdfft?md5=ab3c3a76dbdf1ff573755d82085be616&pid=1-s2.0-S0304397524004249-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304397524004249\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Computer Science","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304397524004249","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
摘要
我们研究 Alon、Demaine、Hajiaghai 和 Leighton 于 2010 年提出的和基本网络创建博弈。在这个博弈中,当且仅当对于 G 中的每条边 uv 和任意顶点 v′ 而言,将边 uv 与边 uv′ 互换不会减少从 u 到所有其他顶点的距离总和时,一个无向无权重图 G 才被称为和基本均衡。这一概念是网络创建博弈的核心,其核心问题是理解所产生的均衡图的结构,尤其是它们如何在全局上最小化直径。在这个意义上,阿隆等人在 2013 年证明了和基本均衡图直径的上限为 2O(logn),他们还证明了如果和基本均衡图是一棵树,那么它的直径最多为 2。在本文中,我们证明了 2 的上限也适用于双方形图,甚至适用于一些非双方形类,如块图和仙人掌图。
We study the sum basic network creation game introduced in 2010 by Alon, Demaine, Hajiaghai and Leighton. In this game, an undirected and unweighted graph G is said to be a sum basic equilibrium if and only if, for every edge uv and any vertex in G, swapping edge uv with edge does not decrease the total sum of the distances from u to all the other vertices. This concept lies at the heart of the network creation games, where the central problem is to understand the structure of the resulting equilibrium graphs, and in particular, how well they globally minimize the diameter. In this sense, in 2013 Alon et al. showed an upper bound of on the diameter of sum basic equilibria, and they also proved that if a sum basic equilibrium graph is a tree, then it has diameter at most 2. In this paper, we prove that the upper bound of 2 also holds for bipartite graphs and even for some non-bipartite classes like block graphs and cactus graphs.
期刊介绍:
Theoretical Computer Science is mathematical and abstract in spirit, but it derives its motivation from practical and everyday computation. Its aim is to understand the nature of computation and, as a consequence of this understanding, provide more efficient methodologies. All papers introducing or studying mathematical, logic and formal concepts and methods are welcome, provided that their motivation is clearly drawn from the field of computing.