和基本均衡博弈的直径

IF 0.9 4区 计算机科学 Q3 COMPUTER SCIENCE, THEORY & METHODS
Aida Abiad , Carme Àlvarez , Arnau Messegué
{"title":"和基本均衡博弈的直径","authors":"Aida Abiad ,&nbsp;Carme Àlvarez ,&nbsp;Arnau Messegué","doi":"10.1016/j.tcs.2024.114807","DOIUrl":null,"url":null,"abstract":"<div><p>We study the sum basic network creation game introduced in 2010 by Alon, Demaine, Hajiaghai and Leighton. In this game, an undirected and unweighted graph <em>G</em> is said to be a <em>sum basic equilibrium</em> if and only if, for every edge <em>uv</em> and any vertex <span><math><msup><mrow><mi>v</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> in <em>G</em>, swapping edge <em>uv</em> with edge <span><math><mi>u</mi><msup><mrow><mi>v</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> does not decrease the total sum of the distances from <em>u</em> to all the other vertices. This concept lies at the heart of the network creation games, where the central problem is to understand the structure of the resulting equilibrium graphs, and in particular, how well they globally minimize the diameter. In this sense, in 2013 Alon et al. showed an upper bound of <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>O</mi><mo>(</mo><msqrt><mrow><mi>log</mi><mo>⁡</mo><mi>n</mi></mrow></msqrt><mo>)</mo></mrow></msup></math></span> on the diameter of sum basic equilibria, and they also proved that if a sum basic equilibrium graph is a tree, then it has diameter at most 2. In this paper, we prove that the upper bound of 2 also holds for bipartite graphs and even for some non-bipartite classes like block graphs and cactus graphs.</p></div>","PeriodicalId":49438,"journal":{"name":"Theoretical Computer Science","volume":"1018 ","pages":"Article 114807"},"PeriodicalIF":0.9000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0304397524004249/pdfft?md5=ab3c3a76dbdf1ff573755d82085be616&pid=1-s2.0-S0304397524004249-main.pdf","citationCount":"0","resultStr":"{\"title\":\"The diameter of sum basic equilibria games\",\"authors\":\"Aida Abiad ,&nbsp;Carme Àlvarez ,&nbsp;Arnau Messegué\",\"doi\":\"10.1016/j.tcs.2024.114807\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study the sum basic network creation game introduced in 2010 by Alon, Demaine, Hajiaghai and Leighton. In this game, an undirected and unweighted graph <em>G</em> is said to be a <em>sum basic equilibrium</em> if and only if, for every edge <em>uv</em> and any vertex <span><math><msup><mrow><mi>v</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> in <em>G</em>, swapping edge <em>uv</em> with edge <span><math><mi>u</mi><msup><mrow><mi>v</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> does not decrease the total sum of the distances from <em>u</em> to all the other vertices. This concept lies at the heart of the network creation games, where the central problem is to understand the structure of the resulting equilibrium graphs, and in particular, how well they globally minimize the diameter. In this sense, in 2013 Alon et al. showed an upper bound of <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>O</mi><mo>(</mo><msqrt><mrow><mi>log</mi><mo>⁡</mo><mi>n</mi></mrow></msqrt><mo>)</mo></mrow></msup></math></span> on the diameter of sum basic equilibria, and they also proved that if a sum basic equilibrium graph is a tree, then it has diameter at most 2. In this paper, we prove that the upper bound of 2 also holds for bipartite graphs and even for some non-bipartite classes like block graphs and cactus graphs.</p></div>\",\"PeriodicalId\":49438,\"journal\":{\"name\":\"Theoretical Computer Science\",\"volume\":\"1018 \",\"pages\":\"Article 114807\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0304397524004249/pdfft?md5=ab3c3a76dbdf1ff573755d82085be616&pid=1-s2.0-S0304397524004249-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304397524004249\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Computer Science","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304397524004249","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究 Alon、Demaine、Hajiaghai 和 Leighton 于 2010 年提出的和基本网络创建博弈。在这个博弈中,当且仅当对于 G 中的每条边 uv 和任意顶点 v′ 而言,将边 uv 与边 uv′ 互换不会减少从 u 到所有其他顶点的距离总和时,一个无向无权重图 G 才被称为和基本均衡。这一概念是网络创建博弈的核心,其核心问题是理解所产生的均衡图的结构,尤其是它们如何在全局上最小化直径。在这个意义上,阿隆等人在 2013 年证明了和基本均衡图直径的上限为 2O(logn),他们还证明了如果和基本均衡图是一棵树,那么它的直径最多为 2。在本文中,我们证明了 2 的上限也适用于双方形图,甚至适用于一些非双方形类,如块图和仙人掌图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The diameter of sum basic equilibria games

We study the sum basic network creation game introduced in 2010 by Alon, Demaine, Hajiaghai and Leighton. In this game, an undirected and unweighted graph G is said to be a sum basic equilibrium if and only if, for every edge uv and any vertex v in G, swapping edge uv with edge uv does not decrease the total sum of the distances from u to all the other vertices. This concept lies at the heart of the network creation games, where the central problem is to understand the structure of the resulting equilibrium graphs, and in particular, how well they globally minimize the diameter. In this sense, in 2013 Alon et al. showed an upper bound of 2O(logn) on the diameter of sum basic equilibria, and they also proved that if a sum basic equilibrium graph is a tree, then it has diameter at most 2. In this paper, we prove that the upper bound of 2 also holds for bipartite graphs and even for some non-bipartite classes like block graphs and cactus graphs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Theoretical Computer Science
Theoretical Computer Science 工程技术-计算机:理论方法
CiteScore
2.60
自引率
18.20%
发文量
471
审稿时长
12.6 months
期刊介绍: Theoretical Computer Science is mathematical and abstract in spirit, but it derives its motivation from practical and everyday computation. Its aim is to understand the nature of computation and, as a consequence of this understanding, provide more efficient methodologies. All papers introducing or studying mathematical, logic and formal concepts and methods are welcome, provided that their motivation is clearly drawn from the field of computing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信