第二维纳混沌非线性函数极限定理中的收敛率分析

IF 1.1 2区 数学 Q3 STATISTICS & PROBABILITY
Gi-Ren Liu
{"title":"第二维纳混沌非线性函数极限定理中的收敛率分析","authors":"Gi-Ren Liu","doi":"10.1016/j.spa.2024.104477","DOIUrl":null,"url":null,"abstract":"<div><p>This paper analyzes the distribution distance between random vectors from the analytic wavelet transform of squared envelopes of Gaussian processes and their large-scale limits. For Gaussian processes with a long-memory parameter below 1/2, the limit combines the second and fourth Wiener chaos. Using a non-Stein approach, we determine the convergence rate in the Kolmogorov metric. When the long-memory parameter exceeds 1/2, the limit is a chi-distributed random process, and the convergence rate in the Wasserstein metric is determined using multidimensional Stein’s method. Notable differences in convergence rate upper bounds are observed for long-memory parameters within (1/2,3/4) and (3/4,1).</p></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"178 ","pages":"Article 104477"},"PeriodicalIF":1.1000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0304414924001832/pdfft?md5=5c3f453c2bd0f6b0556bcd5c22fc2c45&pid=1-s2.0-S0304414924001832-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Convergence rate analysis in limit theorems for nonlinear functionals of the second Wiener chaos\",\"authors\":\"Gi-Ren Liu\",\"doi\":\"10.1016/j.spa.2024.104477\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper analyzes the distribution distance between random vectors from the analytic wavelet transform of squared envelopes of Gaussian processes and their large-scale limits. For Gaussian processes with a long-memory parameter below 1/2, the limit combines the second and fourth Wiener chaos. Using a non-Stein approach, we determine the convergence rate in the Kolmogorov metric. When the long-memory parameter exceeds 1/2, the limit is a chi-distributed random process, and the convergence rate in the Wasserstein metric is determined using multidimensional Stein’s method. Notable differences in convergence rate upper bounds are observed for long-memory parameters within (1/2,3/4) and (3/4,1).</p></div>\",\"PeriodicalId\":51160,\"journal\":{\"name\":\"Stochastic Processes and their Applications\",\"volume\":\"178 \",\"pages\":\"Article 104477\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0304414924001832/pdfft?md5=5c3f453c2bd0f6b0556bcd5c22fc2c45&pid=1-s2.0-S0304414924001832-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stochastic Processes and their Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304414924001832\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Processes and their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304414924001832","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

本文分析了高斯过程平方包络的解析小波变换随机向量间的分布距离及其大尺度极限。对于长记忆参数低于 1/2 的高斯过程,极限结合了第二和第四维纳混沌。我们采用非斯泰因方法,确定了柯尔莫哥洛夫度量的收敛速率。当长记忆参数超过 1/2时,极限是一个秩分布随机过程,我们使用多维斯坦因方法确定了瓦瑟斯坦度量的收敛速率。长记忆参数在(1/2,3/4)和(3/4,1)范围内的收敛率上限存在显著差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Convergence rate analysis in limit theorems for nonlinear functionals of the second Wiener chaos

This paper analyzes the distribution distance between random vectors from the analytic wavelet transform of squared envelopes of Gaussian processes and their large-scale limits. For Gaussian processes with a long-memory parameter below 1/2, the limit combines the second and fourth Wiener chaos. Using a non-Stein approach, we determine the convergence rate in the Kolmogorov metric. When the long-memory parameter exceeds 1/2, the limit is a chi-distributed random process, and the convergence rate in the Wasserstein metric is determined using multidimensional Stein’s method. Notable differences in convergence rate upper bounds are observed for long-memory parameters within (1/2,3/4) and (3/4,1).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Stochastic Processes and their Applications
Stochastic Processes and their Applications 数学-统计学与概率论
CiteScore
2.90
自引率
7.10%
发文量
180
审稿时长
23.6 weeks
期刊介绍: Stochastic Processes and their Applications publishes papers on the theory and applications of stochastic processes. It is concerned with concepts and techniques, and is oriented towards a broad spectrum of mathematical, scientific and engineering interests. Characterization, structural properties, inference and control of stochastic processes are covered. The journal is exacting and scholarly in its standards. Every effort is made to promote innovation, vitality, and communication between disciplines. All papers are refereed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信