{"title":"关于使用累积生成函数推断时间序列","authors":"A. Moor, D. La Vecchia, E. Ronchetti","doi":"10.1016/j.csda.2024.108044","DOIUrl":null,"url":null,"abstract":"<div><p>Innovative inference procedures for analyzing time series data are introduced. The methodology covers density approximation and composite hypothesis testing based on Whittle's estimator, which is a widely applied M-estimator in the frequency domain. Its core feature involves the cumulant generating function of Whittle's score obtained using an approximated distribution of the periodogram ordinates. A testing algorithm not only significantly expands the applicability of the state-of-the-art saddlepoint test, but also maintains the numerical accuracy of the saddlepoint approximation. Connections are made with three other prevalent frequency domain techniques: the bootstrap, empirical likelihood, and exponential tilting. Numerical examples using both simulated and real data illustrate the advantages and accuracy of the saddlepoint methods.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0167947324001282/pdfft?md5=9b20083653468ba252743f2a96727926&pid=1-s2.0-S0167947324001282-main.pdf","citationCount":"0","resultStr":"{\"title\":\"On the use of the cumulant generating function for inference on time series\",\"authors\":\"A. Moor, D. La Vecchia, E. Ronchetti\",\"doi\":\"10.1016/j.csda.2024.108044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Innovative inference procedures for analyzing time series data are introduced. The methodology covers density approximation and composite hypothesis testing based on Whittle's estimator, which is a widely applied M-estimator in the frequency domain. Its core feature involves the cumulant generating function of Whittle's score obtained using an approximated distribution of the periodogram ordinates. A testing algorithm not only significantly expands the applicability of the state-of-the-art saddlepoint test, but also maintains the numerical accuracy of the saddlepoint approximation. Connections are made with three other prevalent frequency domain techniques: the bootstrap, empirical likelihood, and exponential tilting. Numerical examples using both simulated and real data illustrate the advantages and accuracy of the saddlepoint methods.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0167947324001282/pdfft?md5=9b20083653468ba252743f2a96727926&pid=1-s2.0-S0167947324001282-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167947324001282\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167947324001282","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
介绍了用于分析时间序列数据的创新推理程序。该方法涵盖了基于惠特尔估计器的密度近似和复合假设检验,惠特尔估计器是频域中广泛应用的 M 估计器。其核心特征是利用周期图序数的近似分布获得惠特尔评分的累积生成函数。测试算法不仅大大扩展了最先进的鞍点测试的适用性,而且保持了鞍点近似的数值精度。与其他三种流行的频域技术:自举法、经验似然法和指数倾斜法建立了联系。使用模拟和真实数据的数值示例说明了鞍点方法的优势和准确性。
On the use of the cumulant generating function for inference on time series
Innovative inference procedures for analyzing time series data are introduced. The methodology covers density approximation and composite hypothesis testing based on Whittle's estimator, which is a widely applied M-estimator in the frequency domain. Its core feature involves the cumulant generating function of Whittle's score obtained using an approximated distribution of the periodogram ordinates. A testing algorithm not only significantly expands the applicability of the state-of-the-art saddlepoint test, but also maintains the numerical accuracy of the saddlepoint approximation. Connections are made with three other prevalent frequency domain techniques: the bootstrap, empirical likelihood, and exponential tilting. Numerical examples using both simulated and real data illustrate the advantages and accuracy of the saddlepoint methods.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.