有限域上渐近良好的 LCD 2-类阿贝尔码

Pub Date : 2024-08-29 DOI:10.1016/j.disc.2024.114224
Guanghui Zhang , Liren Lin , Xuemei Liu
{"title":"有限域上渐近良好的 LCD 2-类阿贝尔码","authors":"Guanghui Zhang ,&nbsp;Liren Lin ,&nbsp;Xuemei Liu","doi":"10.1016/j.disc.2024.114224","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we construct a class of linear complementary dual (LCD for short) 2-quasi-abelian codes over a finite field. Based on counting the number of such codes and estimating the number of the codes in this class whose relative minimum weights are small, we prove that the class of LCD 2-quasi-abelian codes over any finite field is asymptotically good. The existence of such codes is unconditional, which is different from the case of self-dual 2-quasi-abelian codes over a special finite field.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0012365X24003558/pdfft?md5=d75cfe8788325d2bba4c277d4bfdd968&pid=1-s2.0-S0012365X24003558-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Asymptotically good LCD 2-quasi-abelian codes over finite fields\",\"authors\":\"Guanghui Zhang ,&nbsp;Liren Lin ,&nbsp;Xuemei Liu\",\"doi\":\"10.1016/j.disc.2024.114224\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we construct a class of linear complementary dual (LCD for short) 2-quasi-abelian codes over a finite field. Based on counting the number of such codes and estimating the number of the codes in this class whose relative minimum weights are small, we prove that the class of LCD 2-quasi-abelian codes over any finite field is asymptotically good. The existence of such codes is unconditional, which is different from the case of self-dual 2-quasi-abelian codes over a special finite field.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0012365X24003558/pdfft?md5=d75cfe8788325d2bba4c277d4bfdd968&pid=1-s2.0-S0012365X24003558-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012365X24003558\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X24003558","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们构建了一类有限域上的线性互补对偶(简称 LCD)2-类阿贝尔码。基于对这类编码数量的统计和对该类编码中相对最小权值较小的编码数量的估计,我们证明了任意有限域上的 LCD 2-quasi-abelian 编码类是渐近良好的。这类码的存在是无条件的,这与特殊有限域上的自偶 2- 类阿贝尔码的情况不同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Asymptotically good LCD 2-quasi-abelian codes over finite fields

In this paper, we construct a class of linear complementary dual (LCD for short) 2-quasi-abelian codes over a finite field. Based on counting the number of such codes and estimating the number of the codes in this class whose relative minimum weights are small, we prove that the class of LCD 2-quasi-abelian codes over any finite field is asymptotically good. The existence of such codes is unconditional, which is different from the case of self-dual 2-quasi-abelian codes over a special finite field.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信