用于预测纤维增强复合材料机械构成行为的周动力学卷积神经网络

IF 6.9 1区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
{"title":"用于预测纤维增强复合材料机械构成行为的周动力学卷积神经网络","authors":"","doi":"10.1016/j.cma.2024.117309","DOIUrl":null,"url":null,"abstract":"<div><p>Despite advancements in predicting the constitutive relationships of composite materials, characterizing the effects of microstructural randomness on their mechanical behaviors remains challenging. In this study, we propose a data-driven convolutional neural network (CNN) to efficiently predict the stress-strain curves containing three key material features (Tensile strength, modulus, and toughness) of fiber reinforced composites. Firstly, stress-strain curves for composites with arbitrary fiber distributions were generated using experimentally validated peridynamics (PD) model. Principal component analysis (PCA) was then employed to learn these curves in a lower-dimensional space, reducing computational costs. Subsequently, these reduced data, along with randomly distributed microstructural features, were used to train, validate, and evaluate the CNN models. The combined CNN and PCA model accurately predicted stress-strain curves with maximum errors of 2.5 % for tensile strength, 10% for modulus, and 20 % for toughness. Furthermore, data augmentation and Mean Squared Error (MSE) as a loss function significantly enhanced the model's prediction accuracy. Our findings indicated that DenseNet121 outperformed other CNN models in predicting the properties of fiber-reinforced materials, further demonstrating the effectiveness of the proposed model. This work successfully demonstrates the applicability of a data-driven CNN approach to predict stress-strain relations for engineering materials with intricate heterogeneous microstructures, paving the way for data-driven computational mechanics applied in composites.</p></div>","PeriodicalId":55222,"journal":{"name":"Computer Methods in Applied Mechanics and Engineering","volume":null,"pages":null},"PeriodicalIF":6.9000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Peridynamics-fueled convolutional neural network for predicting mechanical constitutive behaviors of fiber reinforced composites\",\"authors\":\"\",\"doi\":\"10.1016/j.cma.2024.117309\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Despite advancements in predicting the constitutive relationships of composite materials, characterizing the effects of microstructural randomness on their mechanical behaviors remains challenging. In this study, we propose a data-driven convolutional neural network (CNN) to efficiently predict the stress-strain curves containing three key material features (Tensile strength, modulus, and toughness) of fiber reinforced composites. Firstly, stress-strain curves for composites with arbitrary fiber distributions were generated using experimentally validated peridynamics (PD) model. Principal component analysis (PCA) was then employed to learn these curves in a lower-dimensional space, reducing computational costs. Subsequently, these reduced data, along with randomly distributed microstructural features, were used to train, validate, and evaluate the CNN models. The combined CNN and PCA model accurately predicted stress-strain curves with maximum errors of 2.5 % for tensile strength, 10% for modulus, and 20 % for toughness. Furthermore, data augmentation and Mean Squared Error (MSE) as a loss function significantly enhanced the model's prediction accuracy. Our findings indicated that DenseNet121 outperformed other CNN models in predicting the properties of fiber-reinforced materials, further demonstrating the effectiveness of the proposed model. This work successfully demonstrates the applicability of a data-driven CNN approach to predict stress-strain relations for engineering materials with intricate heterogeneous microstructures, paving the way for data-driven computational mechanics applied in composites.</p></div>\",\"PeriodicalId\":55222,\"journal\":{\"name\":\"Computer Methods in Applied Mechanics and Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Methods in Applied Mechanics and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0045782524005656\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Applied Mechanics and Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045782524005656","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

尽管在预测复合材料的构效关系方面取得了进展,但表征微观结构随机性对其机械行为的影响仍具有挑战性。在本研究中,我们提出了一种数据驱动的卷积神经网络(CNN),用于有效预测包含纤维增强复合材料三个关键材料特征(拉伸强度、模量和韧性)的应力-应变曲线。首先,利用实验验证的周动力学(PD)模型生成任意纤维分布的复合材料的应力-应变曲线。然后采用主成分分析法(PCA)在低维空间中学习这些曲线,从而降低计算成本。随后,这些缩小的数据以及随机分布的微结构特征被用于训练、验证和评估 CNN 模型。CNN 和 PCA 组合模型准确预测了应力-应变曲线,最大误差分别为拉伸强度 2.5%、模量 10%、韧性 20%。此外,数据增强和平均平方误差 (MSE) 作为损失函数也显著提高了模型的预测精度。我们的研究结果表明,DenseNet 121 在预测纤维增强材料性能方面的表现优于其他 CNN 模型,进一步证明了所提模型的有效性。这项工作成功证明了数据驱动 CNN 方法适用于预测具有复杂异质微结构的工程材料的应力应变关系,为数据驱动计算力学在复合材料中的应用铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Peridynamics-fueled convolutional neural network for predicting mechanical constitutive behaviors of fiber reinforced composites

Despite advancements in predicting the constitutive relationships of composite materials, characterizing the effects of microstructural randomness on their mechanical behaviors remains challenging. In this study, we propose a data-driven convolutional neural network (CNN) to efficiently predict the stress-strain curves containing three key material features (Tensile strength, modulus, and toughness) of fiber reinforced composites. Firstly, stress-strain curves for composites with arbitrary fiber distributions were generated using experimentally validated peridynamics (PD) model. Principal component analysis (PCA) was then employed to learn these curves in a lower-dimensional space, reducing computational costs. Subsequently, these reduced data, along with randomly distributed microstructural features, were used to train, validate, and evaluate the CNN models. The combined CNN and PCA model accurately predicted stress-strain curves with maximum errors of 2.5 % for tensile strength, 10% for modulus, and 20 % for toughness. Furthermore, data augmentation and Mean Squared Error (MSE) as a loss function significantly enhanced the model's prediction accuracy. Our findings indicated that DenseNet121 outperformed other CNN models in predicting the properties of fiber-reinforced materials, further demonstrating the effectiveness of the proposed model. This work successfully demonstrates the applicability of a data-driven CNN approach to predict stress-strain relations for engineering materials with intricate heterogeneous microstructures, paving the way for data-driven computational mechanics applied in composites.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
12.70
自引率
15.30%
发文量
719
审稿时长
44 days
期刊介绍: Computer Methods in Applied Mechanics and Engineering stands as a cornerstone in the realm of computational science and engineering. With a history spanning over five decades, the journal has been a key platform for disseminating papers on advanced mathematical modeling and numerical solutions. Interdisciplinary in nature, these contributions encompass mechanics, mathematics, computer science, and various scientific disciplines. The journal welcomes a broad range of computational methods addressing the simulation, analysis, and design of complex physical problems, making it a vital resource for researchers in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信