振动圆筒的气动噪声和流动结构实验研究

IF 2.8 2区 工程技术 Q2 ENGINEERING, MECHANICAL
{"title":"振动圆筒的气动噪声和流动结构实验研究","authors":"","doi":"10.1016/j.expthermflusci.2024.111300","DOIUrl":null,"url":null,"abstract":"<div><p>The noise mitigation effect of bio-inspired geometries has attracted growing attention from both research and industry, such as the vibrissa-shaped cylinder derived from the harbor seal. Experiments were conducted to investigate the far-field noise and the near-field wake of the flow past a vibrissa cylinder, a circular cylinder, and an elliptical cylinder at <span><math><mrow><mi>R</mi><mi>e</mi><mo>=</mo><mn>3</mn><mo>.</mo><mn>6</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>4</mn></mrow></msup></mrow></math></span>, in the subcritical flow regime. The frequency characteristic of the far-field acoustic pressure and the near-field velocities are analyzed. The mean and fluctuating velocities, dominant flow modes from proper orthogonal decomposition in both vertical and horizontal planes as well as the time-frequency behavior of the dominant flow structures from wavelet transform are also presented to better understand the wake dynamics and the direct relation of these flow structures with the far-field noise. The vibrissa cylinder reduces the overall sound pressure level by 13.2 dB and 8.3 dB compared with the circular and the elliptical cylinders, respectively, with a remarkable attenuation of the tonal peak associated with vortex shedding. From the detailed velocity measurements in multiple wake planes, it is clearly observed that vortex shedding of the vibrissa cylinder is weaker in strength and significantly less coherent in the spanwise direction than the other two cylinder cases, accompanied by more transient changes. The results also reveal the distinct flow behaviors behind the nodal and saddle planes of the vibrissa cylinder, further contributing to this three-dimensional vortex shedding. Consequently, the power spectral density of the tonal peaks associated with the vortex shedding in both near-field velocities and far-field acoustic pressure are attenuated, leading to a lower noise level. Understanding the detailed flow dynamics of the vibrissa cylinder will provide useful insights into more efficient bio-inspired cylinder designs in noise mitigation and wake control.</p></div>","PeriodicalId":12294,"journal":{"name":"Experimental Thermal and Fluid Science","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0894177724001699/pdfft?md5=c48741bb2307725a50c07a375ef6738c&pid=1-s2.0-S0894177724001699-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Experimental investigation on aerodynamic noise and flow structures of a vibrissa-shaped cylinder\",\"authors\":\"\",\"doi\":\"10.1016/j.expthermflusci.2024.111300\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The noise mitigation effect of bio-inspired geometries has attracted growing attention from both research and industry, such as the vibrissa-shaped cylinder derived from the harbor seal. Experiments were conducted to investigate the far-field noise and the near-field wake of the flow past a vibrissa cylinder, a circular cylinder, and an elliptical cylinder at <span><math><mrow><mi>R</mi><mi>e</mi><mo>=</mo><mn>3</mn><mo>.</mo><mn>6</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>4</mn></mrow></msup></mrow></math></span>, in the subcritical flow regime. The frequency characteristic of the far-field acoustic pressure and the near-field velocities are analyzed. The mean and fluctuating velocities, dominant flow modes from proper orthogonal decomposition in both vertical and horizontal planes as well as the time-frequency behavior of the dominant flow structures from wavelet transform are also presented to better understand the wake dynamics and the direct relation of these flow structures with the far-field noise. The vibrissa cylinder reduces the overall sound pressure level by 13.2 dB and 8.3 dB compared with the circular and the elliptical cylinders, respectively, with a remarkable attenuation of the tonal peak associated with vortex shedding. From the detailed velocity measurements in multiple wake planes, it is clearly observed that vortex shedding of the vibrissa cylinder is weaker in strength and significantly less coherent in the spanwise direction than the other two cylinder cases, accompanied by more transient changes. The results also reveal the distinct flow behaviors behind the nodal and saddle planes of the vibrissa cylinder, further contributing to this three-dimensional vortex shedding. Consequently, the power spectral density of the tonal peaks associated with the vortex shedding in both near-field velocities and far-field acoustic pressure are attenuated, leading to a lower noise level. Understanding the detailed flow dynamics of the vibrissa cylinder will provide useful insights into more efficient bio-inspired cylinder designs in noise mitigation and wake control.</p></div>\",\"PeriodicalId\":12294,\"journal\":{\"name\":\"Experimental Thermal and Fluid Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0894177724001699/pdfft?md5=c48741bb2307725a50c07a375ef6738c&pid=1-s2.0-S0894177724001699-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental Thermal and Fluid Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0894177724001699\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Thermal and Fluid Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0894177724001699","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

生物启发几何形状的降噪效果在研究和工业领域都引起了越来越多的关注,例如源自港海豹的振子形圆柱体。实验研究了在 Re=3.6×104 的次临界流动状态下,流经振动圆柱体、圆形圆柱体和椭圆形圆柱体的远场噪声和近场唤醒。分析了远场声压和近场速度的频率特性。为了更好地理解尾流动力学以及这些流动结构与远场噪声的直接关系,还介绍了垂直和水平面适当正交分解得到的平均速度和波动速度、主要流动模式,以及小波变换得到的主要流动结构的时频行为。与圆形和椭圆形圆筒相比,振弦圆筒的整体声压级分别降低了 13.2 分贝和 8.3 分贝,与涡流脱落相关的音调峰值也显著减弱。从多个尾流平面的详细速度测量结果可以清楚地看出,与其他两个圆筒相比,振弦圆筒的涡流脱落强度较弱,在跨度方向上的一致性也明显较差,同时伴随着更多的瞬态变化。结果还揭示了振动圆柱体节点平面和鞍形平面后的不同流动行为,进一步加剧了这种三维涡流脱落。因此,近场速度和远场声压中与涡流脱落相关的音调峰值的功率谱密度被减弱,从而降低了噪声水平。了解振膜气缸的详细流动动力学,将为在噪声减缓和尾流控制方面采用更有效的生物启发气缸设计提供有益的启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experimental investigation on aerodynamic noise and flow structures of a vibrissa-shaped cylinder

The noise mitigation effect of bio-inspired geometries has attracted growing attention from both research and industry, such as the vibrissa-shaped cylinder derived from the harbor seal. Experiments were conducted to investigate the far-field noise and the near-field wake of the flow past a vibrissa cylinder, a circular cylinder, and an elliptical cylinder at Re=3.6×104, in the subcritical flow regime. The frequency characteristic of the far-field acoustic pressure and the near-field velocities are analyzed. The mean and fluctuating velocities, dominant flow modes from proper orthogonal decomposition in both vertical and horizontal planes as well as the time-frequency behavior of the dominant flow structures from wavelet transform are also presented to better understand the wake dynamics and the direct relation of these flow structures with the far-field noise. The vibrissa cylinder reduces the overall sound pressure level by 13.2 dB and 8.3 dB compared with the circular and the elliptical cylinders, respectively, with a remarkable attenuation of the tonal peak associated with vortex shedding. From the detailed velocity measurements in multiple wake planes, it is clearly observed that vortex shedding of the vibrissa cylinder is weaker in strength and significantly less coherent in the spanwise direction than the other two cylinder cases, accompanied by more transient changes. The results also reveal the distinct flow behaviors behind the nodal and saddle planes of the vibrissa cylinder, further contributing to this three-dimensional vortex shedding. Consequently, the power spectral density of the tonal peaks associated with the vortex shedding in both near-field velocities and far-field acoustic pressure are attenuated, leading to a lower noise level. Understanding the detailed flow dynamics of the vibrissa cylinder will provide useful insights into more efficient bio-inspired cylinder designs in noise mitigation and wake control.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Experimental Thermal and Fluid Science
Experimental Thermal and Fluid Science 工程技术-工程:机械
CiteScore
6.70
自引率
3.10%
发文量
159
审稿时长
34 days
期刊介绍: Experimental Thermal and Fluid Science provides a forum for research emphasizing experimental work that enhances fundamental understanding of heat transfer, thermodynamics, and fluid mechanics. In addition to the principal areas of research, the journal covers research results in related fields, including combined heat and mass transfer, flows with phase transition, micro- and nano-scale systems, multiphase flow, combustion, radiative transfer, porous media, cryogenics, turbulence, and novel experimental techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信