利用 iMC 蒙特卡洛代码中的迭代裂变概率评估有效动力学参数和邻接通量分布

IF 1.9 3区 工程技术 Q1 NUCLEAR SCIENCE & TECHNOLOGY
{"title":"利用 iMC 蒙特卡洛代码中的迭代裂变概率评估有效动力学参数和邻接通量分布","authors":"","doi":"10.1016/j.anucene.2024.110878","DOIUrl":null,"url":null,"abstract":"<div><p>The iterated fission probability (IFP) method enables assessment of adjoint flux-weighted kinetic parameters, i.e., effective kinetic parameters, in Monte Carlo (MC) simulation, an essential capability in modern MC codes. This method can be extended to calculate adjoint flux-weighted quantities within a prescribed phase-space, enabling the estimation of adjoint flux distributions. The iMC Monte Carlo code, developed at the Korea Advanced Institute of Science and Technology (KAIST), is proficient in both calculating effective kinetic parameters and adjoint flux distributions. This paper presents benchmark results verifying the code’s capabilities. Critical device configurations are considered for evaluating kinetic parameters, compared with the Serpent2 code results. Both multi-group and continuous-energy benchmarks are solved to assess IFP-based spatial- and energy-wise adjoint flux distributions, and comparison is made against deterministic transport calculations. Results show that effective kinetic parameters can be accurately estimated, and acceptable adjoint flux distributions can be obtained using the iMC code.</p></div>","PeriodicalId":8006,"journal":{"name":"Annals of Nuclear Energy","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of effective kinetic parameters and adjoint flux distribution using iterated fission probability in the iMC Monte Carlo code\",\"authors\":\"\",\"doi\":\"10.1016/j.anucene.2024.110878\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The iterated fission probability (IFP) method enables assessment of adjoint flux-weighted kinetic parameters, i.e., effective kinetic parameters, in Monte Carlo (MC) simulation, an essential capability in modern MC codes. This method can be extended to calculate adjoint flux-weighted quantities within a prescribed phase-space, enabling the estimation of adjoint flux distributions. The iMC Monte Carlo code, developed at the Korea Advanced Institute of Science and Technology (KAIST), is proficient in both calculating effective kinetic parameters and adjoint flux distributions. This paper presents benchmark results verifying the code’s capabilities. Critical device configurations are considered for evaluating kinetic parameters, compared with the Serpent2 code results. Both multi-group and continuous-energy benchmarks are solved to assess IFP-based spatial- and energy-wise adjoint flux distributions, and comparison is made against deterministic transport calculations. Results show that effective kinetic parameters can be accurately estimated, and acceptable adjoint flux distributions can be obtained using the iMC code.</p></div>\",\"PeriodicalId\":8006,\"journal\":{\"name\":\"Annals of Nuclear Energy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Nuclear Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0306454924005413\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Nuclear Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306454924005413","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

迭代裂变概率(IFP)方法能够评估蒙特卡罗(MC)模拟中的邻接通量加权动力学参数,即有效动力学参数,这是现代 MC 代码的一项基本功能。该方法可扩展用于计算规定相空间内的辅助通量加权量,从而估算辅助通量分布。韩国科学技术院(KAIST)开发的 iMC 蒙特卡罗代码能够熟练计算有效动力学参数和辅助通量分布。本文介绍了验证该代码能力的基准结果。在评估动力学参数时,考虑了关键设备配置,并与 Serpent2 代码的结果进行了比较。对多组和连续能量基准进行了求解,以评估基于 IFP 的空间和能量方面的邻接通量分布,并与确定性输运计算进行了比较。结果表明,使用 iMC 代码可以准确估计有效动力学参数,并获得可接受的临界通量分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluation of effective kinetic parameters and adjoint flux distribution using iterated fission probability in the iMC Monte Carlo code

The iterated fission probability (IFP) method enables assessment of adjoint flux-weighted kinetic parameters, i.e., effective kinetic parameters, in Monte Carlo (MC) simulation, an essential capability in modern MC codes. This method can be extended to calculate adjoint flux-weighted quantities within a prescribed phase-space, enabling the estimation of adjoint flux distributions. The iMC Monte Carlo code, developed at the Korea Advanced Institute of Science and Technology (KAIST), is proficient in both calculating effective kinetic parameters and adjoint flux distributions. This paper presents benchmark results verifying the code’s capabilities. Critical device configurations are considered for evaluating kinetic parameters, compared with the Serpent2 code results. Both multi-group and continuous-energy benchmarks are solved to assess IFP-based spatial- and energy-wise adjoint flux distributions, and comparison is made against deterministic transport calculations. Results show that effective kinetic parameters can be accurately estimated, and acceptable adjoint flux distributions can be obtained using the iMC code.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Nuclear Energy
Annals of Nuclear Energy 工程技术-核科学技术
CiteScore
4.30
自引率
21.10%
发文量
632
审稿时长
7.3 months
期刊介绍: Annals of Nuclear Energy provides an international medium for the communication of original research, ideas and developments in all areas of the field of nuclear energy science and technology. Its scope embraces nuclear fuel reserves, fuel cycles and cost, materials, processing, system and component technology (fission only), design and optimization, direct conversion of nuclear energy sources, environmental control, reactor physics, heat transfer and fluid dynamics, structural analysis, fuel management, future developments, nuclear fuel and safety, nuclear aerosol, neutron physics, computer technology (both software and hardware), risk assessment, radioactive waste disposal and reactor thermal hydraulics. Papers submitted to Annals need to demonstrate a clear link to nuclear power generation/nuclear engineering. Papers which deal with pure nuclear physics, pure health physics, imaging, or attenuation and shielding properties of concretes and various geological materials are not within the scope of the journal. Also, papers that deal with policy or economics are not within the scope of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信