利用均衡和大逃杀优化为物联网僵尸网络检测选择特征

IF 4.8 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Qanita Bani Baker, Alaa Samarneh
{"title":"利用均衡和大逃杀优化为物联网僵尸网络检测选择特征","authors":"Qanita Bani Baker,&nbsp;Alaa Samarneh","doi":"10.1016/j.cose.2024.104060","DOIUrl":null,"url":null,"abstract":"<div><p>The Internet of Things (IoT) is rapidly expanding, bringing unprecedented opportunities and significant security risks. Among the most appealing attacks on IoT are botnets, typically utilized for Distributed Denial of Service (DDoS) attacks, identity theft, malware distribution, fraud, and spamming. Early detection and mitigation are crucial considering the nature of IoT devices and botnets. Many of these methods deploy machine learning, such as supervised, unsupervised, and deep learning. As IoT devices generate a massive amount of data of high dimensions, not all data contain valuable information. Feeding data without preprocessing might degrade the quality of the detection model. Thus, optimization methods are needed to determine the subsets of the most relevant features to the detection process. This study utilized the effectiveness of Equilibrium Optimization (EO), Battle Royale Optimization (BRO), and Adaptive Equilibrium Optimization (AEO) for feature selection in detecting IoT botnets using the N-BaIoT dataset. The performance of the selected features is evaluated using three classifiers: K Nearest Neighbor (KNN), Random Forest (RF), and Gaussian Naive Bayes (GNB) considering metrics such as number of features, accuracy, sensitivity, specificity, True Positive Rate (TPR), False Positive Rate (FPR), and time required for feature selection. Our findings indicate the competitive performance of EO and AEO in terms of runtime, number of features selected, and accuracy, compared to recent works on the same dataset.</p></div>","PeriodicalId":51004,"journal":{"name":"Computers & Security","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Feature selection for IoT botnet detection using equilibrium and Battle Royale Optimization\",\"authors\":\"Qanita Bani Baker,&nbsp;Alaa Samarneh\",\"doi\":\"10.1016/j.cose.2024.104060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Internet of Things (IoT) is rapidly expanding, bringing unprecedented opportunities and significant security risks. Among the most appealing attacks on IoT are botnets, typically utilized for Distributed Denial of Service (DDoS) attacks, identity theft, malware distribution, fraud, and spamming. Early detection and mitigation are crucial considering the nature of IoT devices and botnets. Many of these methods deploy machine learning, such as supervised, unsupervised, and deep learning. As IoT devices generate a massive amount of data of high dimensions, not all data contain valuable information. Feeding data without preprocessing might degrade the quality of the detection model. Thus, optimization methods are needed to determine the subsets of the most relevant features to the detection process. This study utilized the effectiveness of Equilibrium Optimization (EO), Battle Royale Optimization (BRO), and Adaptive Equilibrium Optimization (AEO) for feature selection in detecting IoT botnets using the N-BaIoT dataset. The performance of the selected features is evaluated using three classifiers: K Nearest Neighbor (KNN), Random Forest (RF), and Gaussian Naive Bayes (GNB) considering metrics such as number of features, accuracy, sensitivity, specificity, True Positive Rate (TPR), False Positive Rate (FPR), and time required for feature selection. Our findings indicate the competitive performance of EO and AEO in terms of runtime, number of features selected, and accuracy, compared to recent works on the same dataset.</p></div>\",\"PeriodicalId\":51004,\"journal\":{\"name\":\"Computers & Security\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Security\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167404824003651\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Security","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167404824003651","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

物联网(IoT)正在迅速扩展,带来了前所未有的机遇和巨大的安全风险。僵尸网络是对物联网最有吸引力的攻击之一,通常用于分布式拒绝服务 (DDoS) 攻击、身份盗用、恶意软件分发、欺诈和垃圾邮件发送。考虑到物联网设备和僵尸网络的性质,早期检测和缓解至关重要。其中许多方法都采用了机器学习,如监督学习、无监督学习和深度学习。由于物联网设备会产生大量高维数据,并非所有数据都包含有价值的信息。未经预处理的数据可能会降低检测模型的质量。因此,需要采用优化方法来确定与检测过程最相关的特征子集。本研究利用均衡优化(EO)、大逃杀优化(BRO)和自适应均衡优化(AEO)的有效性,使用 N-BaIoT 数据集检测物联网僵尸网络的特征选择。使用三种分类器对所选特征的性能进行了评估:考虑到特征数量、准确性、灵敏度、特异性、真阳性率(TPR)、假阳性率(FPR)和特征选择所需的时间等指标,对 K Nearest Neighbor (KNN)、Random Forest (RF) 和 Gaussian Naive Bayes (GNB) 三种分类器的性能进行了评估。我们的研究结果表明,在运行时间、所选特征数量和准确率方面,EO 和 AEO 的性能与最近在相同数据集上的研究结果相比具有竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Feature selection for IoT botnet detection using equilibrium and Battle Royale Optimization

The Internet of Things (IoT) is rapidly expanding, bringing unprecedented opportunities and significant security risks. Among the most appealing attacks on IoT are botnets, typically utilized for Distributed Denial of Service (DDoS) attacks, identity theft, malware distribution, fraud, and spamming. Early detection and mitigation are crucial considering the nature of IoT devices and botnets. Many of these methods deploy machine learning, such as supervised, unsupervised, and deep learning. As IoT devices generate a massive amount of data of high dimensions, not all data contain valuable information. Feeding data without preprocessing might degrade the quality of the detection model. Thus, optimization methods are needed to determine the subsets of the most relevant features to the detection process. This study utilized the effectiveness of Equilibrium Optimization (EO), Battle Royale Optimization (BRO), and Adaptive Equilibrium Optimization (AEO) for feature selection in detecting IoT botnets using the N-BaIoT dataset. The performance of the selected features is evaluated using three classifiers: K Nearest Neighbor (KNN), Random Forest (RF), and Gaussian Naive Bayes (GNB) considering metrics such as number of features, accuracy, sensitivity, specificity, True Positive Rate (TPR), False Positive Rate (FPR), and time required for feature selection. Our findings indicate the competitive performance of EO and AEO in terms of runtime, number of features selected, and accuracy, compared to recent works on the same dataset.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Security
Computers & Security 工程技术-计算机:信息系统
CiteScore
12.40
自引率
7.10%
发文量
365
审稿时长
10.7 months
期刊介绍: Computers & Security is the most respected technical journal in the IT security field. With its high-profile editorial board and informative regular features and columns, the journal is essential reading for IT security professionals around the world. Computers & Security provides you with a unique blend of leading edge research and sound practical management advice. It is aimed at the professional involved with computer security, audit, control and data integrity in all sectors - industry, commerce and academia. Recognized worldwide as THE primary source of reference for applied research and technical expertise it is your first step to fully secure systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信