{"title":"潮下海草(Zostera marina)草甸中相对暴露在海浪中的沙质沉积物分类","authors":"","doi":"10.1016/j.margeo.2024.107385","DOIUrl":null,"url":null,"abstract":"<div><p>Seagrasses impact on sedimentary intertidal and subtidal ecosystems by affecting local hydrodynamics, geomorphology and sediment properties. Their influence on hydrodynamics is to reduce flow velocities in their canopies, and this leads to increased net sedimentation rates and reduction of the grain size. Most investigations of the seagrass-hydrodynamics-sediment feedback system has been carried out over silt and fine-sand beds under tide-dominated conditions, mostly in the intertidal zone. Here, we use sedimentological data from a relatively wave-exposed and subtidal seagrass (<em>Zostera marina</em>) meadow in the Isles of Scilly with a fine-to-medium sand bed and show that the sand within the seagrass meadow is indeed finer than in adjacent, unvegetated regions. However, in contrast to previous studies, this is not due to increased mud/silt content within the seagrass meadow, but an almost 0.1-mm shift in the median sediment size across the sand fraction from 0.25 mm (fine to medium sand) to 0.35 mm (medium sand). The studied seagrass meadow is characterised by a distinct spatial structure comprising of vegetated ‘ridges’ and bare sand ‘valleys’. Even the bare sand valleys within the seagrass meadow are characterised by significantly coarser sand than the adjacent vegetated ridges, providing further confirmation of the efficiency of sediment sorting by wave processes that takes place within seagrass meadows. It is concluded that any numerical modelling involving sediment transport processes associated with seagrass environments must account for variability in the textural characteristics.</p></div>","PeriodicalId":18229,"journal":{"name":"Marine Geology","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0025322724001695/pdfft?md5=e80d112cb2863d969c0a16dbdcf99be8&pid=1-s2.0-S0025322724001695-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Sediment sorting within a relatively wave-exposed and sandy subtidal seagrass (Zostera marina) meadow\",\"authors\":\"\",\"doi\":\"10.1016/j.margeo.2024.107385\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Seagrasses impact on sedimentary intertidal and subtidal ecosystems by affecting local hydrodynamics, geomorphology and sediment properties. Their influence on hydrodynamics is to reduce flow velocities in their canopies, and this leads to increased net sedimentation rates and reduction of the grain size. Most investigations of the seagrass-hydrodynamics-sediment feedback system has been carried out over silt and fine-sand beds under tide-dominated conditions, mostly in the intertidal zone. Here, we use sedimentological data from a relatively wave-exposed and subtidal seagrass (<em>Zostera marina</em>) meadow in the Isles of Scilly with a fine-to-medium sand bed and show that the sand within the seagrass meadow is indeed finer than in adjacent, unvegetated regions. However, in contrast to previous studies, this is not due to increased mud/silt content within the seagrass meadow, but an almost 0.1-mm shift in the median sediment size across the sand fraction from 0.25 mm (fine to medium sand) to 0.35 mm (medium sand). The studied seagrass meadow is characterised by a distinct spatial structure comprising of vegetated ‘ridges’ and bare sand ‘valleys’. Even the bare sand valleys within the seagrass meadow are characterised by significantly coarser sand than the adjacent vegetated ridges, providing further confirmation of the efficiency of sediment sorting by wave processes that takes place within seagrass meadows. It is concluded that any numerical modelling involving sediment transport processes associated with seagrass environments must account for variability in the textural characteristics.</p></div>\",\"PeriodicalId\":18229,\"journal\":{\"name\":\"Marine Geology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0025322724001695/pdfft?md5=e80d112cb2863d969c0a16dbdcf99be8&pid=1-s2.0-S0025322724001695-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Marine Geology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0025322724001695\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Geology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0025322724001695","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Sediment sorting within a relatively wave-exposed and sandy subtidal seagrass (Zostera marina) meadow
Seagrasses impact on sedimentary intertidal and subtidal ecosystems by affecting local hydrodynamics, geomorphology and sediment properties. Their influence on hydrodynamics is to reduce flow velocities in their canopies, and this leads to increased net sedimentation rates and reduction of the grain size. Most investigations of the seagrass-hydrodynamics-sediment feedback system has been carried out over silt and fine-sand beds under tide-dominated conditions, mostly in the intertidal zone. Here, we use sedimentological data from a relatively wave-exposed and subtidal seagrass (Zostera marina) meadow in the Isles of Scilly with a fine-to-medium sand bed and show that the sand within the seagrass meadow is indeed finer than in adjacent, unvegetated regions. However, in contrast to previous studies, this is not due to increased mud/silt content within the seagrass meadow, but an almost 0.1-mm shift in the median sediment size across the sand fraction from 0.25 mm (fine to medium sand) to 0.35 mm (medium sand). The studied seagrass meadow is characterised by a distinct spatial structure comprising of vegetated ‘ridges’ and bare sand ‘valleys’. Even the bare sand valleys within the seagrass meadow are characterised by significantly coarser sand than the adjacent vegetated ridges, providing further confirmation of the efficiency of sediment sorting by wave processes that takes place within seagrass meadows. It is concluded that any numerical modelling involving sediment transport processes associated with seagrass environments must account for variability in the textural characteristics.
期刊介绍:
Marine Geology is the premier international journal on marine geological processes in the broadest sense. We seek papers that are comprehensive, interdisciplinary and synthetic that will be lasting contributions to the field. Although most papers are based on regional studies, they must demonstrate new findings of international significance. We accept papers on subjects as diverse as seafloor hydrothermal systems, beach dynamics, early diagenesis, microbiological studies in sediments, palaeoclimate studies and geophysical studies of the seabed. We encourage papers that address emerging new fields, for example the influence of anthropogenic processes on coastal/marine geology and coastal/marine geoarchaeology. We insist that the papers are concerned with the marine realm and that they deal with geology: with rocks, sediments, and physical and chemical processes affecting them. Papers should address scientific hypotheses: highly descriptive data compilations or papers that deal only with marine management and risk assessment should be submitted to other journals. Papers on laboratory or modelling studies must demonstrate direct relevance to marine processes or deposits. The primary criteria for acceptance of papers is that the science is of high quality, novel, significant, and of broad international interest.